Existence for quasilinear systems of SPDEs
in a variational setting

Sebastian Bechtel

(j.w. M. Veraar)

Delft University of Technology, The Netherlands

2nd of July, 2024

3
TUDelft



Our problem for today

Consider SPDE
du = [8;(ay(u)8ju) + 0i®i(u) + <b(u)] dt
+ 3 [baj(u)dsu + ga(u)] dwn,

n>1
u(0) = wo,
on D C RY bounded & subject to Dirichlet BC.
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Z bO"B AojuP + g5 (u)] dwi,
n>1
u*(0) = ug,
on D C R bounded & subject to Dirichlet BC, a =1,..., N.
af baﬁ

Coefficients aj are symmetric, no smoothness, and elliptic:

(a5 (£ x,) = 2bZ‘7(t,x7y )65t x, y™)) 8] > Mgl
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Our problem for today

Consider SPDE
du® = [9)( ?“-%)a-uﬁ) + 007 (u) + 67 (u)] dt

Z bO"B AojuP + g5 (u)] dwi,
n>1
u*(0) = ug,
on D C R bounded & subject to Dirichlet BC, a =1,..., N.
af baﬁ

Coefficients aj are symmetric, no smoothness, and elliptic:

(a5 (£ x,) = 2bZ‘7(t,x7y )65t x, y™)) 8] > Mgl

Question
Does a solution to this system of SPDEs exist?
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Some inspiration from the deterministic world

Deterministic problem (a la Disser, ter Elst, Rehberg JDE '17)
u' — 9i(aj(u)oju) = 9;9i(u) + ¢(u),
u(0) = wp,
on D C RY bounded & subject to Dirichlet BC.
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Some inspiration from the deterministic world

Deterministic problem (a la Disser, ter Elst, Rehberg JDE '17)
u' — 9i(aj(u)oju) = 9;9i(u) + ¢(u),
u(0) = wp,
on D C RY bounded & subject to Dirichlet BC.

Tools used:

© well-posedness for linear equation with f € LP(0, T; H=1(D))
where p > 2,

® Schauder's fixed point theorem.
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deterministic extrapolation result . ..
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deterministic extrapolation result . ..

. and why it fails for SPDEs!
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deterministic extrapolation result . ..

. and why it fails for SPDEs!

For p € (1,00) put
E, = LP(0, T; H (D)),
V, = LP(0, T; HY(D)) n WYP(0, T; H"*(D)).
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deterministic extrapolation result . ..

. and why it fails for SPDEs!

For p € (1,00) put
Ep, = LP(0, T; H~(D)),
V, = LP(0, T; HY(D)) n WYP(0, T; H"*(D)).

Parabolic operator

8t — 8;(a;j6j): Vp — Ep
bounded for all p € (1, 00).
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deterministic extrapolation result . ..

. and why it fails for SPDEs!
For p € (1,00) put
Ep, = LP(0, T; H™}(D)),
V, = LP(0, T; HY(D)) n WYP(0, T; H"*(D)).

Parabolic operator
815 — 6;(a;j6j): Vp — Ep
bounded for all p € (1, c0).

Moreover: 0; — 0;(aj;0;) invertible Vo — E by Lax-Milgram lemma.
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deterministic extrapolation result . ..
. and why it fails for SPDEs!

family of spaces “with a Riesz—

Complex interpolation scale < ’ 8
Thorin theorem
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deterministic extrapolation result . ..
. and why it fails for SPDEs!

family of spaces “with a Riesz—

Complex interpolation scale < ’ i
Thorin theorem

Fact: (Ep)pe(1,00) and (Vp)pe(1,00) are complex interpolation scales

Lemma (Sneiberg)

Let T bounded between interpolation scales (X;)ic(a,6) and (Yi)ic(a,b)-
If T: X;, — Y, invertible, then T: X; — Y invertible for all
i€ (ix —e,ix+e).
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deterministic extrapolation result . ..
. and why it fails for SPDEs!

family of spaces “with a Riesz—

Complex interpolation scale < ’ i
Thorin theorem

Fact: (Ep)pe(1,00) and (Vp)pe(1,00) are complex interpolation scales

Lemma (Sneiberg)

Let T bounded between interpolation scales (X;)ic(a,6) and (Yi)ic(a,b)-
If T: X;, — Y, invertible, then T: X; — Y invertible for all
i€ (ix —e,ix+e).

Upshot: 0r — 0j(a;j0;) invertible Vo, . — Ex ..
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deterministic extrapolation result . ..
. and why it fails for SPDEs!

Now consider linear SPDE:

du = (Au+f) dt+ (Bu+g) dW.
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deterministic extrapolation result . ..
. and why it fails for SPDEs!

Now consider linear SPDE:
du = (Au+f) dt+ (Bu+g) dW.

Right-hand side: consists of deterministic and stochastic parts
~> SPDE is not operator from solution to data space!
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deterministic extrapolation result . ..
. and why it fails for SPDEs!

Now consider linear SPDE:
du = (Au+f) dt+ (Bu+g) dW.
Right-hand side: consists of deterministic and stochastic parts
~> SPDE is not operator from solution to data space!
But: Set E, = LP(Q2 x (0, T); H7Y(D)) x LP(Q x (0, T); L2(U, L?(D))),
V,, analogous, solution operator
S: Ega(f,g)r—>u€ V2

bounded, linear.
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deterministic extrapolation result . ..
. and why it fails for SPDEs!

Now consider linear SPDE:
du = (Au+f) dt+ (Bu+g) dW.
Right-hand side: consists of deterministic and stochastic parts
~> SPDE is not operator from solution to data space!
But: Set E, = LP(Q x (0, T); H"Y(D)) x LP(Q x (0, T); L2(U, L?(D))),
V,, analogous, solution operator
S: Ega(f,g)r—>u€ V2

bounded, linear.

Here we can attack! (later)
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recap: stochastic compactness method

Blueprint of stochastic compactness method (for example
Debussche-Hofmanova—\Vovelle)
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Blueprint of stochastic compactness method (for example
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@ Consider suitable "approximating” problems.
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recap: stochastic compactness method

Blueprint of stochastic compactness method (for example
Debussche-Hofmanova—\Vovelle)

@ Consider suitable "approximating” problems.
@ Approximate solutions u, have tight laws.
® Prokhorov + Skorohod: 1, — U almost surely on Q.
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recap: stochastic compactness method

Blueprint of stochastic compactness method (for example
Debussche-Hofmanova—\Vovelle)

@ Consider suitable "approximating” problems.

@ Approximate solutions u, have tight laws.

® Prokhorov + Skorohod: U, — U almost surely on Q.
O ldentify u as solution of original SPDE.
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Approximation of Debussche—Hofmanova—Vovelle

Approximate second order SPDE by fourth order SPDEs.
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Approximation of Debussche—Hofmanova—Vovelle

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order ~- approximate problems easy to
solve
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Approximation of Debussche—Hofmanova—Vovelle

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order ~- approximate problems easy to
solve

Counterarguments:

@ morally: fourth order approximation less natural,
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Approximation of Debussche—Hofmanova—Vovelle

Approximate second order SPDE by fourth order SPDEs.
Upshot: quasi-linearity is lower order ~- approximate problems easy to
solve
Counterarguments:
@ morally: fourth order approximation less natural,
@ initial value more regular (adapted to fourth order),

©® higher order introduces more boundary conditions (~ work on T),
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Approximation of Debussche—Hofmanova—Vovelle

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order ~- approximate problems easy to
solve

Counterarguments:
@ morally: fourth order approximation less natural,
@ initial value more regular (adapted to fourth order),
©® higher order introduces more boundary conditions (~ work on T),

O just L%-estimates for Vu, (~ identification of solution harder).
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Approximation of Debussche—Hofmanova—Vovelle

Approximate second order SPDE by fourth order SPDEs.
Upshot: quasi-linearity is lower order ~- approximate problems easy to
solve
Counterarguments:
@ morally: fourth order approximation less natural,
@ initial value more regular (adapted to fourth order),
©® higher order introduces more boundary conditions (~ work on T),

O just L2-estimates for Vu, (~ identification of solution harder).

If only we could extrapolate variational regularity ...
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YES, WE CAN!



extrapolation of variational solutions

Let

V C H C V* Gelfand triple,

W a U-cylindrical Brownian motion,
A:Qx(0,T)— L(V, V") symmetric, bounded,
B:Qx(0,T)— L(V,L2(U, H)) bounded.
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extrapolation of variational solutions

Let

V C H C V* Gelfand triple,

W a U-cylindrical Brownian motion,
A:Qx(0,T)— L(V, V") symmetric, bounded,
B:Qx(0,T)— L(V,L2(U, H)) bounded.
Consider

du= (Au+f) dt+ (Bu+ g) dW,
u(0) = wp.
Only assume ellipticity:

1
—(Av,v) — §||BVH%2(U,H) > AlvlIy = Mllv].

z
TUDelft 10 / 15



extrapolation of variational solutions

Let

V C H C V* Gelfand triple,

W a U-cylindrical Brownian motion,
A:Qx(0,T)— L(V, V") symmetric, bounded,
B:Qx(0,T)— L(V,L2(U, H)) bounded.
Consider

du= (Au+f) dt+ (Bu+ g) dW,
u(0) = wp.
Only assume ellipticity:
1
—(Av,v) = S11BVIZ,,my = MVIY = MilvIE:
(Can reduce to M =0.)
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extrapolation of variational solutions

Idea for extrapolation (inspired by Bohnlein—Egert '23, Gaussian bounds
for heat semigroups):
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extrapolation of variational solutions

Idea for extrapolation (inspired by Bohnlein—Egert '23, Gaussian bounds
for heat semigroups):

e S C C unit strip. Im 2z
e Craft S 5 z+— (A(z), B(z)) analytic
* with A(f) = A and B(¢) = B for
6 € (0,1).
0 ot s

%
TUDelft 11 /15



extrapolation of variational solutions

Idea for extrapolation (inspired by Bohnlein—Egert '23, Gaussian bounds
for heat semigroups):

. . ]
e S C C unit strip. mz

® Craft S 5 z+— (A(z), B(z)) analytic
* with A(f) = A and B(¢) = B for
6 € (0,1).

Re z

Red line: perturbation of autonomous case
~~ LP-maximal regularity for all p
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extrapolation of variational solutions

Idea for extrapolation (inspired by Bohnlein—Egert '23, Gaussian bounds
for heat semigroups):

. . ]
e S C C unit strip. mz

® Craft S 5 z+— (A(z), B(z)) analytic
* with A(f) = A and B(¢) = B for
6 € (0,1).

Re z

Red line: perturbation of autonomous case
~~ LP-maximal regularity for all p

Blue line: (still) variational case.
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extrapolation of variational solutions

Idea for extrapolation (inspired by Bohnlein—Egert '23, Gaussian bounds
for heat semigroups):

. : /
e S C C unit strip. mz

® Craft S 5 z+— (A(z), B(z)) analytic
* with A(f) = A and B(¢) = B for
6 € (0,1).

Re z

Red line: perturbation of autonomous case
~~ LP-maximal regularity for all p

Blue line: (still) variational case.

Upshot: Stein interpolation of solution operator between L? and LP
= [%*¢-maximal regularity for (A(6), B(#)) = (A, B).
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extrapolation of variational solutions — main results

Theorem (extrapolated regularity — B., Veraar)
Exists p > 2 depending on ellipticity of (A, B) such that for
felP(Qx(0,T); V"), gelP(Qx(0,T); L2(U, H)),
up € LP(S;(H, V)1_2/,p)
unique variational solution u satisfies

u € LP(Q; C5([0, T]; [H, V]5))-
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extrapolation of variational solutions — main results

Theorem (extrapolated regularity — B., Veraar)
Exists p > 2 depending on ellipticity of (A, B) such that for
felP(Qx(0,T);, V"), gelP(Q2x(0,T); L2(U, H)),
up € LP(S;(H, V)1_2/,p)
unique variational solution u satisfies

u € LP(Q; C5([0, T]; [H, V]5))-

Theorem (universal compactness — B., Veraar)
Suppose V C H compact. The laws of

{u solution: (A, B) uniformly elliptic, |||, [|g||, [|uo]| < K}
are tight on C([0, T]; H).
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back to the start

Recall our system of SPDEs with Dirichlet BC
du® = [9;( ?ﬂ(u)a-uﬂ) + 8;0%(u) + ¢°(u)] dt

+Z nu u?)o;uP + g2 (u)] dwy,
n>1

u™(0) = uf.
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back to the start

Recall our system of SPDEs with Dirichlet BC
du® = [0;(a]" (u)dju®) + 0,05 (u) + ¢ (u)] dt

+ Z baﬁ Poju’ + g “(u)] dwy,
n>1

u™(0) = uf.
Approximate problems: just regularize the coefficients!
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back to the start

Recall our system of SPDEs with Dirichlet BC
du = [0 ?ﬁ(u)a-uﬂ) + 0% (u) + ¢°(u)] dt
+ Z ojuP + g2 (u)] dwp,

n>1
u™(0) = uf.
Approximate problems: just regularize the coefficients!
Universal compactness result 4+ stochastic compactness method

a.s. U, — uin C([0, T];L3(D)) & Vi, — Vi in LP(0, T;L%(D)).
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back to the start

Recall our system of SPDEs with Dirichlet BC
du® = [01(a5” ()0 ) - B) 0,97 (u) + ¢°(u)]
+Z ojuP + g2 (u)] dwp,

n>1
u™(0) = uf.
Approximate problems: just regularize the coefficients!
Universal compactness result 4+ stochastic compactness method

a.s. U, — uin C([0, T];L3(D)) & Vi, — Vi in LP(0, T;L%(D)).
Latter fact in general not useful, but:

~ . Vitali's convergence
P .2
Vup, bounded in LP(Q2 x (0, T); L(D)) = theorem applicable
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existence results on quasilinear SPDEs

Consider system of SPDEs with Dirichlet BC
du® = [9;( ?ﬂ(u)a-uﬁ)ww(u) + ¢%(u)] dt

Z baﬁ Noju® + g8 (u)] dwa,
n>1

u™(0) = ug'.
Theorem (B., Veraar)

Let ®, ¢, g Lipschitz, up € LP(Q; 82 2/”(D)) — system admits
solution.

With some further (mild) assumptions: ®, ¢ of polynomial growth
possible.
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Thank you for your attention!

A digital version of this presentation can be found here:
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http://sebastian-bechtel.info/spde_delft2024.pdf
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