Existence for quasilinear systems of SPDEs in a variational setting

Sebastian Bechtel

(j.w. M. Veraar)

Delft University of Technology, The Netherlands

2nd of July, 2024

Consider SPDE

$$du = \left[\partial_i(a_{ij}(u)\partial_j u) + \partial_i \Phi_i(u) + \phi(u)\right] dt$$
$$+ \sum_{n \ge 1} \left[b_{n,j}(u)\partial_j u + g_n(u)\right] dw_n,$$
$$u(0) = u_0,$$

on $D \subseteq \mathbb{R}^d$ bounded & subject to Dirichlet BC.

Consider SPDE

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt$$
$$+ \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n},$$
$$u^{\alpha}(0) = u_{0}^{\alpha},$$

on $D \subseteq \mathbb{R}^d$ bounded & subject to Dirichlet BC, $\alpha = 1, ..., N$.

Consider SPDE

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt + \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n}, u^{\alpha}(0) = u_{0}^{\alpha},$$

on $D \subseteq \mathbb{R}^d$ bounded & subject to Dirichlet BC, $\alpha = 1, ..., N$.

Coefficients $a_{ij}^{\alpha\beta}$, $b_{n,j}^{\alpha\beta}$ are symmetric, no smoothness, and elliptic:

$$\left(a_{ij}^{\alpha\beta}(t,x,y)-\frac{1}{2}b_{n,i}^{\gamma\alpha}(t,x,y^{\alpha})b_{n,j}^{\gamma\beta}(t,x,y^{\alpha})\right)\xi_{i}^{\alpha}\xi_{j}^{\beta}\geq\lambda|\xi|^{2}.$$

Consider SPDE

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt + \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n}, u^{\alpha}(0) = u_{0}^{\alpha},$$

on $D \subseteq \mathbb{R}^d$ bounded & subject to Dirichlet BC, $\alpha = 1, ..., N$.

Coefficients $a_{ij}^{\alpha\beta}$, $b_{n,j}^{\alpha\beta}$ are symmetric, no smoothness, and elliptic:

$$\left(a_{ij}^{\alpha\beta}(t,x,y)-\frac{1}{2}b_{n,i}^{\gamma\alpha}(t,x,y^{\alpha})b_{n,j}^{\gamma\beta}(t,x,y^{\alpha})\right)\xi_{i}^{\alpha}\xi_{j}^{\beta}\geq\lambda|\xi|^{2}.$$

Question

Does a solution to this system of SPDEs exist?

Some inspiration from the deterministic world

Deterministic problem (à la Disser, ter Elst, Rehberg JDE '17)

$$u' - \partial_i(a_{ij}(u)\partial_j u) = \partial_i \Phi_i(u) + \phi(u),$$

$$u(0) = u_0,$$

on $D \subseteq \mathbb{R}^d$ bounded & subject to Dirichlet BC.

Some inspiration from the deterministic world

Deterministic problem (à la Disser, ter Elst, Rehberg JDE '17)

$$u' - \partial_i(a_{ij}(u)\partial_j u) = \partial_i \Phi_i(u) + \phi(u),$$

$$u(0) = u_0,$$

on $D \subseteq \mathbb{R}^d$ bounded & subject to Dirichlet BC.

Tools used:

- 1 well-posedness for linear equation with $f \in L^p(0, T; H^{-1}(D))$ where p > 2,
- 2 Schauder's fixed point theorem.

... and why it fails for SPDEs!

... and why it fails for SPDEs!

For
$$p \in (1, \infty)$$
 put
$$E_p = L^p(0, T; H^{-1}(D)),$$

$$V_p = L^p(0, T; H^1(D)) \cap W^{1,p}(0, T; H^{-1}(D)).$$

... and why it fails for SPDEs!

For
$$p \in (1, \infty)$$
 put
$$E_p = L^p(0, T; H^{-1}(D)),$$

$$V_p = L^p(0, T; H^1(D)) \cap W^{1,p}(0, T; H^{-1}(D)).$$

Parabolic operator

$$\partial_t - \partial_i (a_{ij}\partial_j) \colon V_p \to E_p$$

bounded for all $p \in (1, \infty)$.

... and why it fails for SPDEs!

For
$$p\in(1,\infty)$$
 put

$$E_p = L^p(0, T; H^{-1}(D)),$$

 $V_p = L^p(0, T; H^1(D)) \cap W^{1,p}(0, T; H^{-1}(D)).$

Parabolic operator

$$\partial_t - \partial_i(a_{ij}\partial_j) \colon V_p \to E_p$$

bounded for all $p \in (1, \infty)$.

Moreover: $\partial_t - \partial_i(a_{ij}\partial_j)$ invertible $V_2 \to E_2$ by Lax–Milgram lemma.

... and why it fails for SPDEs!

Complex interpolation scale \leftrightarrow family of spaces "with a Riesz–Thorin theorem"

... and why it fails for SPDEs!

Complex interpolation scale \leftrightarrow family of spaces "with a Riesz–Thorin theorem"

Fact: $(E_p)_{p \in (1,\infty)}$ and $(V_p)_{p \in (1,\infty)}$ are complex interpolation scales

... and why it fails for SPDEs!

Complex interpolation scale \leftrightarrow family of spaces "with a Riesz–Thorin theorem"

Fact: $(E_p)_{p\in(1,\infty)}$ and $(V_p)_{p\in(1,\infty)}$ are complex interpolation scales

Lemma (Sneiberg)

Let T bounded between interpolation scales $(X_i)_{i \in (a,b)}$ and $(Y_i)_{i \in (a,b)}$. If $T: X_{i_*} \to Y_{i_*}$ invertible, then $T: X_i \to Y_i$ invertible for all $i \in (i_* - \varepsilon, i_* + \varepsilon)$.

... and why it fails for SPDEs!

Complex interpolation scale \leftrightarrow family of spaces "with a Riesz–Thorin theorem"

Fact: $(E_p)_{p\in(1,\infty)}$ and $(V_p)_{p\in(1,\infty)}$ are complex interpolation scales

Lemma (Sneiberg)

Let T bounded between interpolation scales $(X_i)_{i\in(a,b)}$ and $(Y_i)_{i\in(a,b)}$. If $T\colon X_{i_*}\to Y_{i_*}$ invertible, then $T\colon X_i\to Y_i$ invertible for all $i\in(i_*-\varepsilon,i_*+\varepsilon)$.

Upshot: $\partial_t - \partial_i(a_{ij}\partial_j)$ invertible $V_{2+\varepsilon} \to E_{2+\varepsilon}$.

... and why it fails for SPDEs!

Now consider linear SPDE:

$$du = (Au + f) dt + (Bu + g) dW.$$

... and why it fails for SPDEs!

Now consider linear SPDE:

$$du = (Au + f) dt + (Bu + g) dW.$$

Right-hand side: consists of deterministic and stochastic parts SPDE is not operator from solution to data space!

... and why it fails for SPDEs!

Now consider linear SPDE:

$$du = (Au + f) dt + (Bu + g) dW.$$

Right-hand side: consists of deterministic and stochastic parts SPDE is not operator from solution to data space!

But: Set $E_p = L^p(\Omega \times (0, T); H^{-1}(D)) \times L^p(\Omega \times (0, T); \mathcal{L}_2(U, L^2(D)))$, V_p analogous, solution operator

$$S \colon E_2 \ni (f,g) \mapsto u \in V_2$$

bounded, linear.

... and why it fails for SPDEs!

Now consider linear SPDE:

$$du = (Au + f) dt + (Bu + g) dW.$$

Right-hand side: consists of deterministic and stochastic parts SPDE is not operator from solution to data space!

But: Set $E_p = L^p(\Omega \times (0, T); H^{-1}(D)) \times L^p(\Omega \times (0, T); \mathcal{L}_2(U, L^2(D)))$, V_p analogous, solution operator

$$S: E_2 \ni (f,g) \mapsto u \in V_2$$

bounded, linear.

Here we can attack! (later)

Blueprint of stochastic compactness method (for example Debussche–Hofmanova–Vovelle)

1 Consider suitable "approximating" problems.

- Consider suitable "approximating" problems.
- 2 Approximate solutions u_n have tight laws.

- 1 Consider suitable "approximating" problems.
- **2** Approximate solutions u_n have tight laws.
- **3** Prokhorov + Skorohod: $\widetilde{u}_n \to \widetilde{u}$ almost surely on $\widetilde{\Omega}$.

- 1 Consider suitable "approximating" problems.
- **2** Approximate solutions u_n have tight laws.
- **3** Prokhorov + Skorohod: $\widetilde{u}_n \to \widetilde{u}$ almost surely on Ω .
- 4 Identify \widetilde{u} as solution of original SPDE.

Approximate second order SPDE by fourth order SPDEs.

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order → approximate problems easy to solve

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order $\linearity \rightarrow$ approximate problems easy to solve

Counterarguments:

• morally: fourth order approximation less natural,

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order $\begin{subarray}{l} \leadsto \\ \end{subarray}$ approximate problems easy to solve

Counterarguments:

- morally: fourth order approximation less natural,
- 2 initial value more regular (adapted to fourth order),

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order $\begin{subarray}{l} \leadsto \\ \end{subarray}$ approximate problems easy to solve

Counterarguments:

- morally: fourth order approximation less natural,
- initial value more regular (adapted to fourth order),
- 3 higher order introduces more boundary conditions (\rightsquigarrow work on \mathbb{T}),

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order $\begin{subarray}{l} \leadsto \\ \end{subarray}$ approximate problems easy to solve

Counterarguments:

- morally: fourth order approximation less natural,
- initial value more regular (adapted to fourth order),
- 3 higher order introduces more boundary conditions (\rightsquigarrow work on \mathbb{T}),
- 4 just L^2 -estimates for ∇u_n (\rightsquigarrow identification of solution harder).

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order $\begin{subarray}{l} \leadsto \\ \end{subarray}$ approximate problems easy to solve

Counterarguments:

- 1 morally: fourth order approximation less natural,
- initial value more regular (adapted to fourth order),
- 3 higher order introduces more boundary conditions (\rightsquigarrow work on \mathbb{T}),
- 4 just L^2 -estimates for ∇u_n (\rightsquigarrow identification of solution harder).

If only we could extrapolate variational regularity . . .

extrapolation of variational solutions

Let

- $V \subseteq H \subseteq V^*$ Gelfand triple,
- W a U-cylindrical Brownian motion,
- $A: \Omega \times (0, T) \rightarrow \mathcal{L}(V, V^*)$ symmetric, bounded,
- $B: \Omega \times (0, T) \rightarrow \mathcal{L}(V, \mathcal{L}_2(U, H))$ bounded.

extrapolation of variational solutions

Let

- $V \subseteq H \subseteq V^*$ Gelfand triple,
- W a U-cylindrical Brownian motion,
- $A: \Omega \times (0, T) \rightarrow \mathcal{L}(V, V^*)$ symmetric, bounded,
- $B: \Omega \times (0,T) \to \mathcal{L}(V,\mathcal{L}_2(U,H))$ bounded.

Consider

$$du = (Au + f) dt + (Bu + g) dW,$$

 $u(0) = u_0.$

Only assume ellipticity:

$$-\langle Av, v \rangle - \frac{1}{2} \|Bv\|_{\mathcal{L}_2(U,H)}^2 \ge \lambda \|v\|_V^2 - M\|v\|_H^2.$$

extrapolation of variational solutions

Let

- $V \subseteq H \subseteq V^*$ Gelfand triple,
- W a U-cylindrical Brownian motion,
- $A: \Omega \times (0, T) \rightarrow \mathcal{L}(V, V^*)$ symmetric, bounded,
- $B: \Omega \times (0,T) \to \mathcal{L}(V,\mathcal{L}_2(U,H))$ bounded.

Consider

$$du = (Au + f) dt + (Bu + g) dW,$$

 $u(0) = u_0.$

Only assume ellipticity:

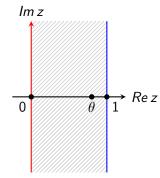
$$-\langle Av,v\rangle - \frac{1}{2}\|Bv\|_{\mathcal{L}_2(U,H)}^2 \geq \lambda \|v\|_V^2 - M\|v\|_H^2.$$

(Can reduce to M = 0.)

Idea for extrapolation (inspired by Böhnlein–Egert '23, Gaussian bounds for heat semigroups):

Idea for extrapolation (inspired by Böhnlein–Egert '23, Gaussian bounds for heat semigroups):

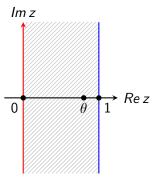
- $S \subseteq \mathbb{C}$ unit strip.
- Craft $S \ni z \mapsto (A(z), B(z))$ analytic
- with $A(\theta) = A$ and $B(\theta) = B$ for $\theta \in (0,1)$.



Idea for extrapolation (inspired by Böhnlein–Egert '23, Gaussian bounds for heat semigroups):

- $S \subseteq \mathbb{C}$ unit strip.
- Craft $S \ni z \mapsto (A(z), B(z))$ analytic
- with $A(\theta) = A$ and $B(\theta) = B$ for $\theta \in (0,1)$.

Red line: perturbation of autonomous case $\rightarrow L^p$ -maximal regularity for all p

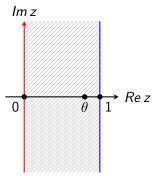


Idea for extrapolation (inspired by Böhnlein–Egert '23, Gaussian bounds for heat semigroups):

- $S \subseteq \mathbb{C}$ unit strip.
- Craft $S \ni z \mapsto (A(z), B(z))$ analytic
- with $A(\theta) = A$ and $B(\theta) = B$ for $\theta \in (0, 1)$.

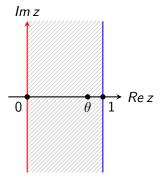
Red line: perturbation of autonomous case $\rightsquigarrow L^p$ -maximal regularity for all p

Blue line: (still) variational case.



Idea for extrapolation (inspired by Böhnlein–Egert '23, Gaussian bounds for heat semigroups):

- $S \subseteq \mathbb{C}$ unit strip.
- Craft $S \ni z \mapsto (A(z), B(z))$ analytic
- with $A(\theta) = A$ and $B(\theta) = B$ for $\theta \in (0,1)$.



Red line: perturbation of autonomous case $\leadsto L^p$ -maximal regularity for all p

Blue line: (still) variational case.

Upshot: Stein interpolation of solution operator between L^2 and L^p $\implies L^{2+\varepsilon}$ -maximal regularity for $(A(\theta), B(\theta)) = (A, B)$.

extrapolation of variational solutions - main results

Theorem (extrapolated regularity – B., Veraar)

Exists p > 2 depending on ellipticity of (A, B) such that for

$$f \in L^{p}(\Omega \times (0, T); V^{*}), g \in L^{p}(\Omega \times (0, T); \mathcal{L}_{2}(U, H)),$$

 $u_{0} \in L^{p}(\Omega; (H, V)_{1-2/p, p})$

unique variational solution u satisfies

$$u \in L^p(\Omega; C^{\varepsilon}([0, T]; [H, V]_{\delta})).$$

extrapolation of variational solutions - main results

Theorem (extrapolated regularity – B., Veraar)

Exists p > 2 depending on ellipticity of (A, B) such that for

$$f \in L^{p}(\Omega \times (0, T); V^{*}), g \in L^{p}(\Omega \times (0, T); \mathcal{L}_{2}(U, H)),$$

 $u_{0} \in L^{p}(\Omega; (H, V)_{1-2/p, p})$

unique variational solution u satisfies

$$u \in L^p(\Omega; C^{\varepsilon}([0, T]; [H, V]_{\delta})).$$

Theorem (universal compactness – B., Veraar)

Suppose $V \subseteq H$ compact. The laws of

 $\{u \text{ solution: } (A, B) \text{ uniformly elliptic, } ||f||, ||g||, ||u_0|| \le K\}$ are tight on C([0, T]; H).

Recall our system of SPDEs with Dirichlet BC

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt$$
$$+ \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n},$$
$$u^{\alpha}(0) = u_{0}^{\alpha}.$$

Recall our system of SPDEs with Dirichlet BC

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt$$
$$+ \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n},$$
$$u^{\alpha}(0) = u_{0}^{\alpha}.$$

Approximate problems: just regularize the coefficients!

Recall our system of SPDEs with Dirichlet BC

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt$$
$$+ \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n},$$
$$u^{\alpha}(0) = u_{0}^{\alpha}.$$

Approximate problems: just regularize the coefficients!

Universal compactness result + stochastic compactness method

a.s.
$$\widetilde{u}_n \to \widetilde{u}$$
 in $C([0,T];L^2(D))$ & $\nabla \widetilde{u}_n \rightharpoonup \nabla \widetilde{u}$ in $L^p(0,T;L^2(D))$.

Recall our system of SPDEs with Dirichlet BC

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt$$
$$+ \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n},$$
$$u^{\alpha}(0) = u_{0}^{\alpha}.$$

Approximate problems: just regularize the coefficients! Universal compactness result + stochastic compactness method

a.s.
$$\widetilde{u}_n \to \widetilde{u}$$
 in $C([0,T];L^2(D))$ & $\nabla \widetilde{u}_n \rightharpoonup \nabla \widetilde{u}$ in $L^p(0,T;L^2(D))$.

Latter fact in general not useful, but:

$$\nabla \widetilde{u}_n$$
 bounded in $L^p(\Omega \times (0,T); L^2(D)) \implies Vitali's convergence theorem applicable$

existence results on quasilinear SPDEs

Consider system of SPDEs with Dirichlet BC

$$du^{\alpha} = \left[\partial_{i}(a_{ij}^{\alpha\beta}(u)\partial_{j}u^{\beta}) + \partial_{i}\Phi_{i}^{\alpha}(u) + \phi^{\alpha}(u)\right]dt$$
$$+ \sum_{n\geq 1} \left[b_{n,j}^{\alpha\beta}(u^{\beta})\partial_{j}u^{\beta} + g_{n}^{\alpha}(u)\right]dw_{n},$$
$$u^{\alpha}(0) = u_{0}^{\alpha}.$$

Theorem (B., Veraar)

Let Φ , ϕ , g Lipschitz, $u_0 \in L^p(\Omega; B^{1-2/p}_{2,p,0}(D)) \implies$ system admits solution.

With some further (mild) assumptions: Φ , ϕ of polynomial growth possible.

Thank you for your attention!

A digital version of this presentation can be found here:

