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Classical Hardy spaces

Thousands of answers what a Hardy space is. . .

Perspective of BVPs: Put u(t, x) = e−t
√
−∆f .

f ∈ H1(Rd)

⇔ u∗(x) = sup
|y−x |<t

|u(t, x)| ∈ L1(Rd)

⇔ S(u)(x) =

(ˆ ∞
0

 
|y−x |<t

|t∂tu(t, x)|2 dy dt
t

) 1
2

∈ L1(Rd).

Maximal function characterization and square function characterization
(→ area integral).
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Classical Hardy spaces

Recall u(t, x) = e−t
√
−∆f .

Need “extension” u of f to Rd+1
+ to define H1(Rd)?

→ No!

Atomic description:

f ∈ H1(Rd) ⇔ f =
∑
j

λjaj ,

where (λj)j summable and (aj)j are “atoms”: satisfy localization, size
and cancellation conditions.

Observe: conditions independent of −∆!
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BVPs on the halfspace

Generalization: more general BVPs on Rd+1
+

 replace −∆ by general
elliptic operator L in maximal/square function Hardy space!

Heuristic: H1
L(Rd) consists of admissible boundary values for elliptic

BVPs on Rd+1
+ .

Problem: no concrete (L independent) description. . .

Can atomic spaces save us?
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BVPs on cylindrical domains

Let O ⊆ Rd open. Consider

−∆t,xu = 0, in (0,∞)× O,

u(t, x) = 0, for t ∈ (0,∞), x ∈ ∂O,
u(0, ·) = f , in O.

→ cylindrical BVP with lateral Dirichlet BC

Let −∆ Dirichlet Laplacian in O. Assume

• e−t
√
−∆ pointwise meaningful (for instance given by kernel),

• O is doubling.

H1
−∆(O) can be defined by maximal and square function approach!

What about atomic description?

5 / 17



BVPs on cylindrical domains

Let O ⊆ Rd open. Consider

−∆t,xu = 0, in (0,∞)× O,

u(t, x) = 0, for t ∈ (0,∞), x ∈ ∂O,
u(0, ·) = f , in O.

→ cylindrical BVP with lateral Dirichlet BC

Let −∆ Dirichlet Laplacian in O. Assume

• e−t
√
−∆ pointwise meaningful (for instance given by kernel),

• O is doubling.

H1
−∆(O) can be defined by maximal and square function approach!

What about atomic description?

5 / 17



BVPs on cylindrical domains

Let O ⊆ Rd open. Consider

−∆t,xu = 0, in (0,∞)× O,

u(t, x) = 0, for t ∈ (0,∞), x ∈ ∂O,
u(0, ·) = f , in O.

→ cylindrical BVP with lateral Dirichlet BC

Let −∆ Dirichlet Laplacian in O. Assume

• e−t
√
−∆ pointwise meaningful (for instance given by kernel),

• O is doubling.

H1
−∆(O) can be defined by maximal and square function approach!

What about atomic description?

5 / 17



BVPs on cylindrical domains

Let O ⊆ Rd open. Consider

−∆t,xu = 0, in (0,∞)× O,

u(t, x) = 0, for t ∈ (0,∞), x ∈ ∂O,
u(0, ·) = f , in O.

→ cylindrical BVP with lateral Dirichlet BC

Let −∆ Dirichlet Laplacian in O. Assume

• e−t
√
−∆ pointwise meaningful (for instance given by kernel),

• O is doubling.

H1
−∆(O) can be defined by maximal and square function approach!

What about atomic description?

5 / 17



Which atoms?

Non-trivial question: atomic space has to respect imposed boundary
conditions!

Hints from the literature (say when O Lipschitz domain):

Dirichlet Neumann

H1
−∆0

H1
−∆N

H1
Mi

H1
CW

H1
r

H1
z

• H1
Mi by Miyachi: additional “boundary atoms” without

cancellation,

• H1
CW by Coifman–Weiss: classical atoms on O.
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Some goals of our project

• square function and atomic spaces coincide when O is worse than
Lipschitz,

• allow O non-connected,

• mixed boundary conditions: Dirichlet BC only on D ⊆ ∂O.

Also: mixed BC approach unifies cases of Dirichlet and Neumann BC :)

7 / 17



Some goals of our project

• square function and atomic spaces coincide when O is worse than
Lipschitz,

• allow O non-connected,

• mixed boundary conditions: Dirichlet BC only on D ⊆ ∂O.

Also: mixed BC approach unifies cases of Dirichlet and Neumann BC :)

7 / 17



Some goals of our project

• square function and atomic spaces coincide when O is worse than
Lipschitz,

• allow O non-connected,

• mixed boundary conditions: Dirichlet BC only on D ⊆ ∂O.

Also: mixed BC approach unifies cases of Dirichlet and Neumann BC :)

7 / 17



Some goals of our project

• square function and atomic spaces coincide when O is worse than
Lipschitz,

• allow O non-connected,

• mixed boundary conditions: Dirichlet BC only on D ⊆ ∂O.

Also: mixed BC approach unifies cases of Dirichlet and Neumann BC :)

7 / 17



Some geometric quality needed

Consider −∆0 on O = R2 \ {0} with Dirichlet BC.

Question

Do we have H1
−∆0

(O) = H1
Mi (O)?

• Point too thin =⇒ H1
0 (O) = H1(R2).

• Hence H1
−∆0

(O) = H1
−∆(R2) = H1(R2).

• Elements of H1(R2) mean value free but boundary atoms of
H1
Mi (O) not =⇒ H1(R2) 6= H1

Mi (O).

To the contrary: interior of Koch snowflake admissible.
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Mixed BC via non-connected set

Let O = O1∪̇O2.

Impose Dirichlet BC on O1 and Neumann BC on O2.

Question

What’s going to happen?

Atomic guess: everything works componentwise

H1
L(O) = H1

Mi (O1)⊕ H1
CW (O2).

Recall square function

Sf (x) =

(ˆ ∞
0

 
|y−x |<t

|t∂te−t
√
Lf |2 dydt

t

) 1
2

.

But for x ∈ O1 square function Sf (x) uses values on O2!?
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Atoms adapted to boundary conditions

Rest of talk: assume O connected, unbounded and D ⊆ ∂O non-empty.

Let B ball centered in O.

• B always “usual”.

• If 2B ∩ D 6= ∅ then B “near D”.

Let a : O → C measurable, B ball.

Definition

Call a usual atom if supp(a) ⊆ B, ‖a‖2 ≤ |B ∩ O|−
1
2 ,
´
O a dx = 0.

Definition

Call a atom near D if B near D, supp(a) ⊆ B, ‖a‖2 ≤ |B ∩ O|−
1
2 .
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Comparison with traditional spaces

Put H1
D(O) for Hardy space with atoms from previous slide.

Proposition

H1
∂O(O) = H1

Mi & H1
∅(O) = H1

CW .

Dirichlet case: localization argument (Vitali’s covering lemma).

But: D = ∂O =⇒ balls either completely contained in O or
completely outside O.  Doesn’t extend to non-trivial D. . .

Note: theory for H1
D thus unifies pure Dirichlet/Neumann cases!
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Strategy from Auscher–Russ (Lipschitz)

Strategy:

• Atomic space ⊆ maximal space ⊆ square function space.

• Square function space ⊆ atomic space via VMO as predual.

Tasks/ideas:

• Eliminate “detour” via maximal space (uses Lipschitz in Green’s
formula)!

• Develop duality theory for H1
D(O) from scratch!
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Direct embedding into square function space

Assumption

Heat kernel of e−tL has Gaussian bounds + Hölder regularity.

Atomic space ⊆ square function space:

• Calculation inspired by Hofmann–Lu–Mitrea–Mitrea–Yan (for
molecular spaces)

• Usual atom: combine Hölder of kernel with cancellation of atom
(classical CZ).

• Atom near D: some geometry + kernel bounds =⇒ kernel
vanishes in D  substitute for cancellation of atom!!

Kernel bounds + some general theory for mixed BC: recent paper by
Böhnlein–Ciani–Egert (to appear in Math. Ann.).
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Kernel bounds + some general theory for mixed BC: recent paper by
Böhnlein–Ciani–Egert (to appear in Math. Ann.).
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• Usual atom: combine Hölder of kernel with cancellation of atom
(classical CZ).

• Atom near D: some geometry + kernel bounds =⇒ kernel
vanishes in D  substitute for cancellation of atom!!

Kernel bounds + some general theory for mixed BC: recent paper by
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Duality theory for H1
D(O)

Matching BMO-space:

‖f ‖BMOD
= sup

B usual

( 
B
|f − (f )B |2 dx

) 1
2

+ sup
B near D

(ˆ
B
|f |2 dx

) 1
2

.

BMO space “pays the price” for lack of cancellation of atoms!

As usual: define VMOD as closure of “testfunctions” in BMOD .

Theorem

(VMOD)∗ = H1
D(O) & (H1

D(O))∗ = BMOD .

Second claim standard. First claim:

• refine classical proof of Coifman–Weiss.

• Important observation: ϕ ∈ Cc(O), B ball near D =⇒ B needs
minimal size (depending on ϕ) to hit supp(ϕ).
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But what about maximal spaces?!?

Use abstract result for self-adjoint case (Bui–Duong–Ly, JFA ’20).

They show: H1
mol ,L = H1

max (“part” in R(L) ⊆ L2(O) / pre-adapted).

Observation

With a careful look: H1
D = H1

L = (H1
max)∼.

Why is H1
L complete? Not at all clear from definition! But it is dual of

VMOD !
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Application to the Laplacian

Corollary

Let O ⊆ Rd bounded domain and D ⊆ ∂O non-trivial. Put
N = ∂O \ D.

Assume

• O is interior thick,

• D porous,

• cO “fat” away from N,

• O “locally uniform” near N.

Then

H1
−∆D

= H1
D = H1

−∆D ,max .
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Thank you for your attention!

A digital version of this presentation can be found here:
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http://sebastian-bechtel.info/konstanz2024.pdf
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