Hardy spaces on open sets

Sebastian Bechtel

(j.w. T. Böhnlein)

Delft University of Technology, The Netherlands

25th of January, 2024

Thousands of answers what a Hardy space is...

Thousands of answers what a Hardy space is...

Perspective of BVPs

Thousands of answers what a Hardy space is...

Perspective of BVPs: Put $u(t, x) = e^{-t\sqrt{-\Delta}}f$.

$$f \in H^1(\mathbb{R}^d)$$

 $\Leftrightarrow u^*(x) = \sup_{|y-x| < t} |u(t,x)| \in L^1(\mathbb{R}^d)$

Thousands of answers what a Hardy space is...

Perspective of BVPs: Put $u(t, x) = e^{-t\sqrt{-\Delta}}f$.

$$f \in H^{1}(\mathbb{R}^{d})$$

$$\Leftrightarrow u^{*}(x) = \sup_{|y-x| < t} |u(t,x)| \in L^{1}(\mathbb{R}^{d})$$

$$\Leftrightarrow S(u)(x) = \left(\int_{0}^{\infty} \oint_{|y-x| < t} |t\partial_{t}u(t,x)|^{2} \frac{dy dt}{t}\right)^{\frac{1}{2}} \in L^{1}(\mathbb{R}^{d}).$$

Thousands of answers what a Hardy space is...

Perspective of BVPs: Put $u(t, x) = e^{-t\sqrt{-\Delta}}f$.

$$f \in H^{1}(\mathbb{R}^{d})$$

$$\Leftrightarrow u^{*}(x) = \sup_{|y-x| < t} |u(t,x)| \in L^{1}(\mathbb{R}^{d})$$

$$\Leftrightarrow S(u)(x) = \left(\int_{0}^{\infty} \oint_{|y-x| < t} |t\partial_{t}u(t,x)|^{2} \frac{dy dt}{t}\right)^{\frac{1}{2}} \in L^{1}(\mathbb{R}^{d}).$$

Maximal function characterization and square function characterization (\rightarrow area integral).

Recall $u(t,x) = e^{-t\sqrt{-\Delta}}f$.

Need "extension" u of f to \mathbb{R}^{d+1}_+ to define $H^1(\mathbb{R}^d)$?

Recall $u(t,x) = e^{-t\sqrt{-\Delta}}f$.

Need "extension" u of f to \mathbb{R}^{d+1}_+ to define $H^1(\mathbb{R}^d)$? \to No!

Recall $u(t,x) = e^{-t\sqrt{-\Delta}}f$.

Need "extension" u of f to \mathbb{R}^{d+1}_+ to define $H^1(\mathbb{R}^d)$? \to No!

Atomic description:

$$f \in H^1(\mathbb{R}^d) \quad \Leftrightarrow \quad f = \sum_j \lambda_j a_j,$$

where $(\lambda_j)_j$ summable and $(a_j)_j$ are "atoms": satisfy localization, size and cancellation conditions.

Recall $u(t,x) = e^{-t\sqrt{-\Delta}}f$.

Need "extension" u of f to \mathbb{R}^{d+1}_+ to define $H^1(\mathbb{R}^d)$? \to No!

Atomic description:

$$f \in H^1(\mathbb{R}^d) \quad \Leftrightarrow \quad f = \sum_j \lambda_j a_j,$$

where $(\lambda_j)_j$ summable and $(a_j)_j$ are "atoms": satisfy localization, size and cancellation conditions.

Observe: conditions independent of $-\Delta$!

Generalization: more general BVPs on \mathbb{R}^{d+1}_+

Generalization: more general BVPs on $\mathbb{R}^{d+1}_+ \rightsquigarrow$ replace $-\Delta$ by general elliptic operator *L* in maximal/square function Hardy space!

Generalization: more general BVPs on $\mathbb{R}^{d+1}_+ \rightsquigarrow$ replace $-\Delta$ by general elliptic operator *L* in maximal/square function Hardy space!

Heuristic: $H_L^1(\mathbb{R}^d)$ consists of admissible boundary values for elliptic BVPs on \mathbb{R}^{d+1}_+ .

Generalization: more general BVPs on $\mathbb{R}^{d+1}_+ \rightsquigarrow$ replace $-\Delta$ by general elliptic operator *L* in maximal/square function Hardy space!

Heuristic: $H_L^1(\mathbb{R}^d)$ consists of admissible boundary values for elliptic BVPs on \mathbb{R}^{d+1}_+ .

Problem: no concrete (L independent) description...

Generalization: more general BVPs on $\mathbb{R}^{d+1}_+ \rightsquigarrow$ replace $-\Delta$ by general elliptic operator *L* in maximal/square function Hardy space!

Heuristic: $H_L^1(\mathbb{R}^d)$ consists of admissible boundary values for elliptic BVPs on \mathbb{R}^{d+1}_+ .

Problem: no concrete (L independent) description...

Can atomic spaces save us?

Let $O \subseteq \mathbb{R}^d$ open. Consider

$$\begin{aligned} &-\Delta_{t,x} u = 0, & \text{ in } (0,\infty) \times O, \\ &u(t,x) = 0, & \text{ for } t \in (0,\infty), x \in \partial O, \\ &u(0,\cdot) = f, & \text{ in } O. \end{aligned}$$

Let $O \subseteq \mathbb{R}^d$ open. Consider

$$\begin{aligned} &-\Delta_{t,x} u = 0, & \text{ in } (0,\infty) \times O, \\ &u(t,x) = 0, & \text{ for } t \in (0,\infty), x \in \partial O, \\ &u(0,\cdot) = f, & \text{ in } O. \end{aligned}$$

 \rightarrow cylindrical BVP with lateral Dirichlet BC

Let $O \subseteq \mathbb{R}^d$ open. Consider

$$\begin{aligned} &-\Delta_{t,x}u=0, & \text{ in } (0,\infty)\times O, \\ &u(t,x)=0, & \text{ for } t\in(0,\infty), x\in\partial O, \\ &u(0,\cdot)=f, & \text{ in } O. \end{aligned}$$

 \rightarrow cylindrical BVP with lateral Dirichlet BC

Let $-\Delta$ Dirichlet Laplacian in O. Assume

• $e^{-t\sqrt{-\Delta}}$ pointwise meaningful (for instance given by kernel),

• O is doubling.

 $H^1_{-\Delta}(O)$ can be defined by maximal and square function approach!

Let $O \subseteq \mathbb{R}^d$ open. Consider

$$\begin{aligned} &-\Delta_{t,x}u=0, & \text{ in } (0,\infty)\times O, \\ &u(t,x)=0, & \text{ for } t\in(0,\infty), x\in\partial O, \\ &u(0,\cdot)=f, & \text{ in } O. \end{aligned}$$

 \rightarrow cylindrical BVP with lateral Dirichlet BC

Let $-\Delta$ Dirichlet Laplacian in O. Assume

- $e^{-t\sqrt{-\Delta}}$ pointwise meaningful (for instance given by kernel),
- O is doubling.

 $H^1_{-\Delta}(O)$ can be defined by maximal and square function approach!

What about atomic description?

Which atoms?

Non-trivial question: atomic space has to respect imposed boundary conditions!

Which atoms?

Non-trivial question: atomic space has to respect imposed boundary conditions!

Hints from the literature (say when O Lipschitz domain):

Dirichlet	Neumann
$H^1_{-\Delta_0}$	
H^1_{Mi}	
H_r^1	

• H^1_{Mi} by Miyachi: additional "boundary atoms" without cancellation,

Which atoms?

Non-trivial question: atomic space has to respect imposed boundary conditions!

Hints from the literature (say when O Lipschitz domain):

Dirichlet	Neumann
$H^1_{-\Delta_0}$	$H^1_{-\Delta_N}$
H^1_{Mi}	H^1_{CW}
H_r^1	H_z^1

- *H*¹_{Mi} by Miyachi: additional "boundary atoms" without cancellation,
- H_{CW}^1 by Coifman–Weiss: classical atoms on O.

• square function and atomic spaces coincide when *O* is worse than Lipschitz,

- square function and atomic spaces coincide when O is worse than Lipschitz,
- allow O non-connected,

- square function and atomic spaces coincide when O is worse than Lipschitz,
- allow O non-connected,
- mixed boundary conditions: Dirichlet BC only on $D \subseteq \partial O$.

- square function and atomic spaces coincide when O is worse than Lipschitz,
- allow O non-connected,
- mixed boundary conditions: Dirichlet BC only on $D \subseteq \partial O$.

Also: mixed BC approach unifies cases of Dirichlet and Neumann BC :)

Consider $-\Delta_0$ on $O = \mathbb{R}^2 \setminus \{0\}$ with Dirichlet BC.

Consider $-\Delta_0$ on $O = \mathbb{R}^2 \setminus \{0\}$ with Dirichlet BC.

Question

Do we have $H^1_{-\Delta_0}(O) = H^1_{Mi}(O)$?

Consider $-\Delta_0$ on $O = \mathbb{R}^2 \setminus \{0\}$ with Dirichlet BC.

Question

Do we have $H^1_{-\Delta_0}(O) = H^1_{Mi}(O)$?

• Point too thin $\implies H^1_0(O) = H^1(\mathbb{R}^2).$

Consider $-\Delta_0$ on $O = \mathbb{R}^2 \setminus \{0\}$ with Dirichlet BC.

Question

Do we have $H^1_{-\Delta_0}(O) = H^1_{Mi}(O)$?

• Point too thin $\implies H_0^1(O) = H^1(\mathbb{R}^2).$

• Hence
$$H^1_{-\Delta_0}(O) = H^1_{-\Delta}(\mathbb{R}^2) = H^1(\mathbb{R}^2).$$

Consider $-\Delta_0$ on $O = \mathbb{R}^2 \setminus \{0\}$ with Dirichlet BC.

Question

Do we have $H^1_{-\Delta_0}(O) = H^1_{Mi}(O)$?

- Point too thin $\implies H_0^1(O) = H^1(\mathbb{R}^2).$
- Hence $H^1_{-\Delta_0}(O) = H^1_{-\Delta}(\mathbb{R}^2) = H^1(\mathbb{R}^2).$
- Elements of $H^1(\mathbb{R}^2)$ mean value free but boundary atoms of $H^1_{Mi}(O)$ not $\implies H^1(\mathbb{R}^2) \neq H^1_{Mi}(O)$.

Consider $-\Delta_0$ on $O = \mathbb{R}^2 \setminus \{0\}$ with Dirichlet BC.

Question

Do we have $H^1_{-\Delta_0}(O) = H^1_{Mi}(O)$?

- Point too thin $\implies H_0^1(O) = H^1(\mathbb{R}^2).$
- Hence $H^1_{-\Delta_0}(O) = H^1_{-\Delta}(\mathbb{R}^2) = H^1(\mathbb{R}^2).$
- Elements of $H^1(\mathbb{R}^2)$ mean value free but boundary atoms of $H^1_{Mi}(O)$ not $\implies H^1(\mathbb{R}^2) \neq H^1_{Mi}(O)$.

To the contrary: interior of Koch snowflake admissible.

Let $O = O_1 \dot{\cup} O_2$.

Let $O = O_1 \dot{\cup} O_2$. Impose Dirichlet BC on O_1 and Neumann BC on O_2 .

Let $O = O_1 \dot{\cup} O_2$. Impose Dirichlet BC on O_1 and Neumann BC on O_2 .

Question What's going to happen?

Let $O = O_1 \dot{\cup} O_2$. Impose Dirichlet BC on O_1 and Neumann BC on O_2 .

Question What's going to happen?

Atomic guess: everything works componentwise

$$H^1_L(O) = H^1_{Mi}(O_1) \oplus H^1_{CW}(O_2).$$

Mixed BC via non-connected set

Let $O = O_1 \dot{\cup} O_2$. Impose Dirichlet BC on O_1 and Neumann BC on O_2 .

Question What's going to happen?

Atomic guess: everything works componentwise

$$H^1_L(O)=H^1_{Mi}(O_1)\oplus H^1_{CW}(O_2).$$

Recall square function

$$Sf(x) = \left(\int_0^\infty \oint_{|y-x| < t} |t\partial_t e^{-t\sqrt{L}}f|^2 \frac{dydt}{t}\right)^{\frac{1}{2}}$$

But for $x \in O_1$ square function Sf(x) uses values on O_2 !?

Rest of talk: assume O connected, unbounded and $D \subseteq \partial O$ non-empty.

Rest of talk: assume O connected, unbounded and $D \subseteq \partial O$ non-empty.

Let B ball centered in O.

• *B* always "usual".

Rest of talk: assume O connected, unbounded and $D \subseteq \partial O$ non-empty.

Let B ball centered in O.

- *B* always "usual".
- If $2B \cap D \neq \emptyset$ then B "near D".

Rest of talk: assume O connected, unbounded and $D \subseteq \partial O$ non-empty.

Let B ball centered in O.

- B always "usual".
- If $2B \cap D \neq \emptyset$ then B "near D".

Let $a: O \to \mathbb{C}$ measurable, B ball.

Definition

Call a usual atom if $supp(a) \subseteq B$, $||a||_2 \leq |B \cap O|^{-\frac{1}{2}}$, $\int_O a \, dx = 0$.

Rest of talk: assume O connected, unbounded and $D \subseteq \partial O$ non-empty.

Let B ball centered in O.

- B always "usual".
- If $2B \cap D \neq \emptyset$ then B "near D".

Let $a: O \to \mathbb{C}$ measurable, B ball.

Definition

Call a usual atom if $supp(a) \subseteq B$, $||a||_2 \leq |B \cap O|^{-\frac{1}{2}}$, $\int_O a \, dx = 0$.

Definition

Call a atom near D if B near D, $supp(a) \subseteq B$, $||a||_2 \le |B \cap O|^{-\frac{1}{2}}$.

Put $H_D^1(O)$ for Hardy space with atoms from previous slide.

Put $H_D^1(O)$ for Hardy space with atoms from previous slide.

Proposition $H^1_{\partial O}(O) = H^1_{Mi}$ & $H^1_{\varnothing}(O) = H^1_{CW}$.

Put $H_D^1(O)$ for Hardy space with atoms from previous slide.

Proposition $H^{1}_{\partial O}(O) = H^{1}_{Mi} \qquad \& \qquad H^{1}_{\varnothing}(O) = H^{1}_{CW}.$

Dirichlet case: localization argument (Vitali's covering lemma).

Put $H_D^1(O)$ for Hardy space with atoms from previous slide.

Proposition $H^1_{\partial O}(O) = H^1_{Mi}$ & $H^1_{\varnothing}(O) = H^1_{CW}$.

Dirichlet case: localization argument (Vitali's covering lemma).

But: $D = \partial O \implies$ balls either completely contained in O or completely outside O.

Put $H_D^1(O)$ for Hardy space with atoms from previous slide.

Proposition $H^1_{\partial O}(O) = H^1_{Mi}$ & $H^1_{\varnothing}(O) = H^1_{CW}$.

Dirichlet case: localization argument (Vitali's covering lemma).

But: $D = \partial O \implies$ balls either completely contained in O or completely outside O. \rightsquigarrow Doesn't extend to non-trivial D...

Put $H_D^1(O)$ for Hardy space with atoms from previous slide.

Proposition

$$H^1_{\partial O}(O) = H^1_{Mi} \qquad \& \qquad H^1_{\varnothing}(O) = H^1_{CW}.$$

Dirichlet case: localization argument (Vitali's covering lemma).

But: $D = \partial O \implies$ balls either completely contained in O or completely outside O. \rightsquigarrow Doesn't extend to non-trivial D...

Note: theory for H_D^1 thus unifies pure Dirichlet/Neumann cases!

Strategy from Auscher–Russ (Lipschitz)

Strategy:

• Atomic space \subseteq maximal space \subseteq square function space.

Strategy from Auscher-Russ (Lipschitz)

Strategy:

- Atomic space \subseteq maximal space \subseteq square function space.
- Square function space \subseteq atomic space via *VMO* as predual.

Strategy from Auscher-Russ (Lipschitz)

Strategy:

- Atomic space \subseteq maximal space \subseteq square function space.
- Square function space \subseteq atomic space via *VMO* as predual.

Tasks/ideas:

• Eliminate "detour" via maximal space (uses Lipschitz in Green's formula)!

Strategy from Auscher-Russ (Lipschitz)

Strategy:

- Atomic space \subseteq maximal space \subseteq square function space.
- Square function space \subseteq atomic space via *VMO* as predual.

Tasks/ideas:

- Eliminate "detour" via maximal space (uses Lipschitz in Green's formula)!
- Develop duality theory for $H_D^1(O)$ from scratch!

Assumption

Heat kernel of e^{-tL} has Gaussian bounds + Hölder regularity.

Assumption

Heat kernel of e^{-tL} has Gaussian bounds + Hölder regularity.

Atomic space \subseteq square function space:

 Calculation inspired by Hofmann–Lu–Mitrea–Mitrea–Yan (for molecular spaces)

Assumption

Heat kernel of e^{-tL} has Gaussian bounds + Hölder regularity.

Atomic space \subseteq square function space:

- Calculation inspired by Hofmann–Lu–Mitrea–Mitrea–Yan (for molecular spaces)
- Usual atom: combine Hölder of kernel with cancellation of atom (classical CZ).

Assumption

Heat kernel of e^{-tL} has Gaussian bounds + Hölder regularity.

Atomic space \subseteq square function space:

- Calculation inspired by Hofmann–Lu–Mitrea–Mitrea–Yan (for molecular spaces)
- Usual atom: combine Hölder of kernel with cancellation of atom (classical CZ).
- Atom near D: some geometry + kernel bounds ⇒ kernel vanishes in D → substitute for cancellation of atom!!

Assumption

Heat kernel of e^{-tL} has Gaussian bounds + Hölder regularity.

Atomic space \subseteq square function space:

- Calculation inspired by Hofmann–Lu–Mitrea–Mitrea–Yan (for molecular spaces)
- Usual atom: combine Hölder of kernel with cancellation of atom (classical CZ).
- Atom near D: some geometry + kernel bounds ⇒ kernel vanishes in D → substitute for cancellation of atom!!

Kernel bounds + some general theory for mixed BC: recent paper by Böhnlein–Ciani–Egert (to appear in Math. Ann.).

Matching BMO-space:

$$||f||_{BMO_D} = \sup_{B \text{ usual}} \left(\int_B |f - (f)_B|^2 \, dx \right)^{\frac{1}{2}} + \sup_{B \text{ near } D} \left(\int_B |f|^2 \, dx \right)^{\frac{1}{2}}$$

•

Matching BMO-space:

$$||f||_{BMO_D} = \sup_{B \text{ usual}} \left(\oint_B |f - (f)_B|^2 \, dx \right)^{\frac{1}{2}} + \sup_{B \text{ near } D} \left(\int_B |f|^2 \, dx \right)^{\frac{1}{2}}$$

BMO space "pays the price" for lack of cancellation of atoms!

Matching BMO-space:

$$||f||_{BMO_D} = \sup_{B \text{ usual}} \left(\oint_B |f - (f)_B|^2 \, dx \right)^{\frac{1}{2}} + \sup_{B \text{ near } D} \left(\int_B |f|^2 \, dx \right)^{\frac{1}{2}}$$

BMO space "pays the price" for lack of cancellation of atoms! As usual: define VMO_D as closure of "testfunctions" in BMO_D .

Matching BMO-space:

$$||f||_{BMO_D} = \sup_{B \text{ usual}} \left(\oint_B |f - (f)_B|^2 \, dx \right)^{\frac{1}{2}} + \sup_{B \text{ near } D} \left(\int_B |f|^2 \, dx \right)^{\frac{1}{2}}$$

BMO space "pays the price" for lack of cancellation of atoms! As usual: define VMO_D as closure of "testfunctions" in BMO_D .

Theorem

$$(VMO_D)^* = H^1_D(O)$$
 & $(H^1_D(O))^* = BMO_D.$

Matching BMO-space:

$$||f||_{BMO_D} = \sup_{B \text{ usual}} \left(\oint_B |f - (f)_B|^2 \, dx \right)^{\frac{1}{2}} + \sup_{B \text{ near } D} \left(\int_B |f|^2 \, dx \right)^{\frac{1}{2}}$$

BMO space "pays the price" for lack of cancellation of atoms! As usual: define VMO_D as closure of "testfunctions" in BMO_D .

Theorem

$$(VMO_D)^* = H^1_D(O)$$
 & $(H^1_D(O))^* = BMO_D.$

Second claim standard. First claim:

• refine classical proof of Coifman-Weiss.

Matching BMO-space:

$$||f||_{BMO_D} = \sup_{B \text{ usual}} \left(\oint_B |f - (f)_B|^2 \, dx \right)^{\frac{1}{2}} + \sup_{B \text{ near } D} \left(\int_B |f|^2 \, dx \right)^{\frac{1}{2}}$$

BMO space "pays the price" for lack of cancellation of atoms! As usual: define VMO_D as closure of "testfunctions" in BMO_D .

Theorem

$$(VMO_D)^* = H^1_D(O)$$
 & $(H^1_D(O))^* = BMO_D.$

Second claim standard. First claim:

- refine classical proof of Coifman–Weiss.
- Important observation: $\varphi \in C_c(O)$, B ball near $D \implies B$ needs minimal size (depending on φ) to hit supp (φ) .

Use abstract result for self-adjoint case (Bui–Duong–Ly, JFA '20). They show: $\mathbb{H}^1_{mol,L} = \mathbb{H}^1_{max}$

Use abstract result for self-adjoint case (Bui–Duong–Ly, JFA '20). They show: $\mathbb{H}^1_{mol,L} = \mathbb{H}^1_{max}$ ("part" in $R(L) \subseteq L^2(O)$ / pre-adapted).

Use abstract result for self-adjoint case (Bui–Duong–Ly, JFA '20). They show: $\mathbb{H}^1_{mol,L} = \mathbb{H}^1_{max}$ ("part" in $R(L) \subseteq L^2(O)$ / pre-adapted).

Observation

With a careful look: $H_D^1 = H_L^1 = (\mathbb{H}_{max}^1)^{\sim}$.

Use abstract result for self-adjoint case (Bui–Duong–Ly, JFA '20). They show: $\mathbb{H}^1_{mol,L} = \mathbb{H}^1_{max}$ ("part" in $R(L) \subseteq L^2(O)$ / pre-adapted).

Observation

With a careful look: $H_D^1 = H_L^1 = (\mathbb{H}_{max}^1)^{\sim}$.

Why is H_L^1 complete? Not at all clear from definition!

Use abstract result for self-adjoint case (Bui–Duong–Ly, JFA '20). They show: $\mathbb{H}^1_{mol,L} = \mathbb{H}^1_{max}$ ("part" in $R(L) \subseteq L^2(O)$ / pre-adapted).

Observation

With a careful look:
$$H^1_D = H^1_L = (\mathbb{H}^1_{max})^\sim.$$

Why is H_L^1 complete? Not at all clear from definition! But it is dual of $VMO_D!$

Application to the Laplacian

Corollary

Let $O \subseteq \mathbb{R}^d$ bounded domain and $D \subseteq \partial O$ non-trivial. Put $N = \partial O \setminus D$.

Application to the Laplacian

Corollary

Let $O \subseteq \mathbb{R}^d$ bounded domain and $D \subseteq \partial O$ non-trivial. Put $N = \partial O \setminus D$.

Assume

- O is interior thick,
- D porous,
- ^cO "fat" away from N,
- O "locally uniform" near N.

Application to the Laplacian

Corollary

Let $O \subseteq \mathbb{R}^d$ bounded domain and $D \subseteq \partial O$ non-trivial. Put $N = \partial O \setminus D$.

Assume

- O is interior thick,
- D porous,
- ^cO "fat" away from N,
- O "locally uniform" near N.

Then

$$H^1_{-\Delta_D}=H^1_D=H^1_{-\Delta_D,\textit{max}}.$$

Thank you for your attention!

A digital version of this presentation can be found here:

