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Classical Hardy spaces

Thousands of answers what a Hardy space is. . .

Perspective of BVPs: Put u(t,x) = e tV-Af
f e HY(RY)

e u(x)= sup |u(t,x)| € LL(RY)
ly—x|<t
1

5(u)(x):</ooo]l[ | |tatu(t,x)|2@> e LY(RY).
y—x|<t

Maximal function characterization and square function characterization
(— area integral).
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Classical Hardy spaces

Recall u(t,x) = e tV=AF,

Need “extension” u of f to Riﬂ to define H'(R%)?
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Classical Hardy spaces

Recall u(t,x) = e tV=AF,

Need “extension” u of f to Riﬂ to define H1(R?)? — No!

Atomic description:

feHRY) & =) Na,
J

where (;); summable and (a;); are “atoms”: satisfy localization, size
and cancellation conditions.
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Classical Hardy spaces

Recall u(t,x) = e tV=AF,

Need “extension” u of f to Riﬂ to define H1(R?)? — No!
Atomic description:

feHRY) & =) Na,
J

where (;); summable and (a;); are “atoms”: satisfy localization, size
and cancellation conditions.

Observe: conditions independent of —Al
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BVPs on the halfspace

Generalization: more general BVPs on Ri“
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BVPs on the halfspace

Generalization: more general BVPs on Ri“ ~> replace —A by general
elliptic operator L in maximal/square function Hardy space!

Heuristic: H; (R?) consists of admissible boundary values for elliptic
BVPs on R++1.

Problem: no concrete (L independent) description. ..

Can atomic spaces save us?
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BVPs on cylindrical domains

Let O C RY open. Consider
—A¢xu =0, in (0,00) x O,
u(t,x) =0, for t € (0,00),x € 90O,
u(0,-) =f, in O.
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Let O C RY open. Consider
—A¢xu =0, in (0,00) x O,
u(t,x) =0, for t € (0,00),x € 90O,
u(0,-) = f, in O.
— cylindrical BVP with lateral Dirichlet BC

Let —A Dirichlet Laplacian in O. Assume

e e~ V=4 pointwise meaningful (for instance given by kernel),
® O is doubling.

H! ,(O) can be defined by maximal and square function approach!
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BVPs on cylindrical domains

Let O C RY open. Consider
—A¢xu =0, in (0,00) x O,
u(t,x) =0, for t € (0,00),x € 90O,
u(0,-) = f, in O.
— cylindrical BVP with lateral Dirichlet BC

Let —A Dirichlet Laplacian in O. Assume

e e~ V=4 pointwise meaningful (for instance given by kernel),
® O is doubling.

H! ,(O) can be defined by maximal and square function approach!

What about atomic description?
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Which atoms?

Non-trivial question: atomic space has to respect imposed boundary
conditions!
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Which atoms?

Non-trivial question: atomic space has to respect imposed boundary
conditions!

Hints from the literature (say when O Lipschitz domain):

Dirichlet Neumann

1
H_AO
1
HI\/Ii

Hy

° H,}m- by Miyachi: additional “boundary atoms” without
cancellation,
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Which atoms?

Non-trivial question: atomic space has to respect imposed boundary
conditions!

Hints from the literature (say when O Lipschitz domain):

Dirichlet Neumann
HEAO HEAN
Hbi Héw
HL HL

° H,}m- by Miyachi: additional “boundary atoms” without
cancellation,

* HL, by Coifman-Weiss: classical atoms on O.
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Some goals of our project

® square function and atomic spaces coincide when O is worse than
Lipschitz,
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Some goals of our project

® square function and atomic spaces coincide when O is worse than
Lipschitz,

® allow O non-connected,

® mixed boundary conditions: Dirichlet BC only on D C 00.

Also: mixed BC approach unifies cases of Dirichlet and Neumann BC :)
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Some geometric quality needed

Consider —Ag on O = R2\ {0} with Dirichlet BC.
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Some geometric quality needed

Consider —Ag on O = R2\ {0} with Dirichlet BC.

Question
Do we have HEAO(O) = H;,(0)?

* Point too thin = H(0) = H*(R?).
® Hence H!, (0) = HL A(R?) = H}(R?).

* Elements of H*(R?) mean value free but boundary atoms of
Hi,.(0) not = H(R?) # H},.(0).
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Some geometric quality needed

Consider —Ag on O = R2\ {0} with Dirichlet BC.

Question
Do we have HEAO(O) = H;,(0)?

* Point too thin = H(0) = H*(R?).

® Hence H!, (0) = HL A(R?) = H}(R?).

* Elements of H*(R?) mean value free but boundary atoms of
Hi,.(0) not = H(R?) # H},.(0).

To the contrary: interior of Koch snowflake admissible. E;}
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Mixed BC via non-connected set

Let O = 01002.
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Let O = O1UQ,. Impose Dirichlet BC on O; and Neumann BC on O5.
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Mixed BC via non-connected set

Let O = O1UQ,. Impose Dirichlet BC on O; and Neumann BC on O5.

Question
What's going to happen?

Atomic guess: everything works componentwise
H{(0) = Hizi(O1) @ Hew (02).

Recall square function

1
%) 2
SF(x) = / ][ 1o tVEFR )"
0 ly—x|<t t

But for x € Oy square function 5f(x) uses values on O,!7
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Atoms adapted to boundary conditions

Rest of talk: assume O connected, unbounded and D C 9O non-empty.
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Atoms adapted to boundary conditions

Rest of talk: assume O connected, unbounded and D C 9O non-empty.

Let B ball centered in O.
® B always “usual”.
e If 2BN D # @ then B “near D".

Let a: O — C measurable, B ball.
Definition

Call a usual atom if supp(a) C B, |jall2 < |BN O|_%, Joadx=0.
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Atoms adapted to boundary conditions

Rest of talk: assume O connected, unbounded and D C 9O non-empty.

Let B ball centered in O.
® B always “usual”.
e If 2BN D # @ then B “near D".

Let a: O — C measurable, B ball.
Definition

Call a usual atom if supp(a) C B, ||a|l2 < |BN O|_%, Joadx=0.

Definition

Call a atom near D if B near D, supp(a) C B, ||a|l2 < |BN O|_%.
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Comparison with traditional spaces

Put H}(O) for Hardy space with atoms from previous slide.
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Dirichlet case: localization argument (Vitali's covering lemma).

But: D =00 = balls either completely contained in O or
completely outside O.
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Comparison with traditional spaces

Put H}(O) for Hardy space with atoms from previous slide.

Proposition
Hjo(0)=Hy; &  H3(0) = Hgy.-
Dirichlet case: localization argument (Vitali's covering lemma).

But: D =00 = balls either completely contained in O or
completely outside O. ~» Doesn’t extend to non-trivial D. ..

Note: theory for H}, thus unifies pure Dirichlet/Neumann cases!
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Strategy from Auscher—Russ (Lipschitz)

Strategy:

® Atomic space C maximal space C square function space.
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Strategy from Auscher—Russ (Lipschitz)

Strategy:
® Atomic space C maximal space C square function space.

® Square function space C atomic space via VMO as predual.

Tasks/ideas:

¢ Eliminate “detour” via maximal space (uses Lipschitz in Green's
formula)!

* Develop duality theory for H:(O) from scratch!
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Direct embedding into square function space

Assumption

Heat kernel of e~tL has Gaussian bounds + Holder regularity.
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Direct embedding into square function space
Assumption
Heat kernel of e~tL has Gaussian bounds + Holder regularity.

Atomic space C square function space:

¢ Calculation inspired by Hofmann—Lu—-Mitrea—Mitrea—Yan (for
molecular spaces)
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Assumption

Heat kernel of e~tL has Gaussian bounds + Holder regularity.

Atomic space C square function space:
¢ Calculation inspired by Hofmann—Lu—-Mitrea—Mitrea—Yan (for
molecular spaces)
® Usual atom: combine Holder of kernel with cancellation of atom
(classical CZ).

® Atom near D: some geometry + kernel bounds = kernel
vanishes in D ~~ substitute for cancellation of atom!!
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Direct embedding into square function space

Assumption

Heat kernel of e~tL has Gaussian bounds + Holder regularity.

Atomic space C square function space:
¢ Calculation inspired by Hofmann—Lu—-Mitrea—Mitrea—Yan (for
molecular spaces)
® Usual atom: combine Holder of kernel with cancellation of atom
(classical CZ).

® Atom near D: some geometry + kernel bounds = kernel
vanishes in D ~- substitute for cancellation of atom!!

Kernel bounds + some general theory for mixed BC: recent paper by
Bohnlein—Ciani—Egert (to appear in Math. Ann.).
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Duality theory for H5(O)
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As usual: define VMOp as closure of “testfunctions” in BMOp.
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BMO space “pays the price” for lack of cancellation of atoms!

As usual: define VMOp as closure of “testfunctions” in BMOp.

Theorem
(VMOp)* = Hb(O) & (HE(O))* = BMOp.
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Duality theory for H5(O)
Matching BMO-space:

1
2
IFlawo, = sup (£ 17~ B|2dx) v s ([ 1)
B usual B near D B

BMO space “pays the price” for lack of cancellation of atoms!
As usual: define VMOp as closure of “testfunctions” in BMOp.

Theorem
(VMOp)* = Hb(O) & (H}J(O))* = BMOp.

Second claim standard. First claim:
¢ refine classical proof of Coifman—Weiss.
¢ Important observation: ¢ € C.(O), B ball near D = B needs
minimal size (depending on ¢) to hit supp(y).
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But what about maximal spaces?!?
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Use abstract result for self-adjoint case (Bui-Duong-Ly, JFA '20).
They show: H! = Hl
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Use abstract result for self-adjoint case (Bui-Duong-Ly, JFA '20).
They show: H ,, = H},,, (“part” in R(L) C L?(O) / pre-adapted).
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But what about maximal spaces?!?

Use abstract result for self-adjoint case (Bui-Duong-Ly, JFA '20).
They show: H ,, = H},,, (“part” in R(L) C L?(O) / pre-adapted).

m

Observation
With a careful look: Hp = H} = (HL,.,)"~.

Why is H,} complete? Not at all clear from definition! But it is dual of
VMOp!

5
TUDelft 15 / 17



Application to the Laplacian

Corollary

Let O C R? bounded domain and D C &0 non-trivial. Put
N=00\D.
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Application to the Laplacian

Corollary
Let O C RY bounded domain and D C 9O non-trivial. Put
N=00\D.
Assume
e O is interior thick,
® D porous,
e €O “fat” away from N,

O “locally uniform” near N.
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Application to the Laplacian

Corollary
Let O C RY bounded domain and D C 9O non-trivial. Put
N=00\D.
Assume
e O is interior thick,
® D porous,
e €O “fat” away from N,

O “locally uniform” near N.
Then

1 oyl g1
H_ap, = Hp = H_a,,

max-*
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Thank you for your attention!

A digital version of this presentation can be found here:
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http://sebastian-bechtel.info/konstanz2024.pdf
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