sharp geometric conditions for Sobolev extension operators

Sebastian Bechtel

(j.w. R.M. Brown, R. Haller, and P. Tolksdorf)

Delft University of Technology, The Netherlands

November 18, 2022

Let $O \subseteq \mathbb{R}^d$ open.

Classical question: Does there exist $E: W^{1,p}(O) \to W^{1,p}(\mathbb{R}^d)$ linear & bounded with Ef = f on O?

Let $O \subseteq \mathbb{R}^d$ open.

Classical question: Does there exist $E: W^{1,p}(O) \to W^{1,p}(\mathbb{R}^d)$ linear & bounded with Ef = f on O?

Negative answer: not always, for example $O = B(0,1) \times [0,1)$ does not work \odot

Let $O \subseteq \mathbb{R}^d$ open.

Classical question: Does there exist $E: W^{1,p}(O) \to W^{1,p}(\mathbb{R}^d)$ linear & bounded with Ef = f on O?

Negative answer: not always, for example $O = B(0,1) \setminus [0,1)$ does not work \odot

Positive answer: OK with some regularity: Lipschitz boundary, $(\varepsilon,\delta)\text{-domain},\,\ldots$ ©

Let $O \subseteq \mathbb{R}^d$ open.

Classical question: Does there exist $E: W^{1,p}(O) \to W^{1,p}(\mathbb{R}^d)$ linear & bounded with Ef = f on O?

Negative answer: not always, for example $O = B(0,1) \times [0,1)$ does not work \odot

Positive answer: OK with some regularity: Lipschitz boundary, $(\varepsilon,\delta)\text{-domain},\,\ldots$ ©

Question

What happens if we impose a Dirichlet boundary condition?

 \implies

Define $W_0^{1,p}(O)$ as closure of $C_0^{\infty}(O)$ -functions in $W^{1,p}(O)$.

 $E: W_0^{1,p}(O) \to W^{1,p}(\mathbb{R}^d)$ linear & bounded always exists: Just extend by zero!

Define $W_0^{1,p}(O)$ as closure of $C_0^{\infty}(O)$ -functions in $W^{1,p}(O)$.

 $E: W_0^{1,p}(O) \to W^{1,p}(\mathbb{R}^d)$ linear & bounded always exists: Just extend by zero!

Question

What happens in between natural and Dirichlet boundary conditions?

Define $W_0^{1,p}(O)$ as closure of $C_0^{\infty}(O)$ -functions in $W^{1,p}(O)$.

 $E: W_0^{1,p}(O) \to W^{1,p}(\mathbb{R}^d)$ linear & bounded always exists: Just extend by zero!

Question

What happens in between natural and Dirichlet boundary conditions?

That is to say: functions stay away from some boundary part $D \subseteq \partial O$. Which sharp geometric condition to impose in $N = \partial O \setminus D$.

Outline

Let $O \subseteq \mathbb{R}^d$ open, $D \subseteq \partial O$ closed.

- Construction of a W^{1,p}_D(O) extension operator with condition in the spirit of Jones. Joint work R.M. Brown, R. Haller, and P. Tolksdorf. Submitted 2021.
- 2 construction of a $W_D^{s,p}(O)$ extension operator, $s \in (0,1)$, using a density condition. Appeared in Archiv der Mathematik in 2021.

Part 1: extension operator for $W_D^{1,p}(O)$

Setup:

Whitney decomposition of O and ℝ^d \ 0
 ~ interior cubes W_i and exterior cubes W_e

Setup:

- Whitney decomposition of O and ℝ^d \ O
 → interior cubes W_i and exterior cubes W_e
- associate suitable reflected cube $Q^* \in W_i$ with $Q \in W_e$

Setup:

- Whitney decomposition of O and ℝ^d \ 0 → interior cubes W_i and exterior cubes W_e
- associate suitable reflected cube $Q^* \in W_i$ with $Q \in W_e$
- $\{\varphi_Q\}_{Q \in W_e}$ partition of unity of $\mathbb{R}^d \setminus \overline{O}$

Setup:

- Whitney decomposition of O and ℝ^d \ 0 → interior cubes W_i and exterior cubes W_e
- associate suitable reflected cube $Q^* \in W_i$ with $Q \in W_e$
- $\{\varphi_Q\}_{Q\in W_e}$ partition of unity of $\mathbb{R}^d \smallsetminus \overline{O}$

Then define E via

$$Ef = \sum_{Q \in W_e} (f)_{Q^*} \varphi_Q \quad \text{on } \mathbb{R}^d \smallsetminus \overline{O}.$$

For simplicity: assume O unbounded and connected

Crucial estimate (Gradient estimate):

Crucial estimate (Gradient estimate):

Let $R \in W_e$. Expand:

$$Ef = \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} (f)_{Q^*} \varphi_Q = \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} [(f)_{Q^*} - (f)_{R^*}] \varphi_Q + (f)_{R^*} \quad \text{on } R.$$

Crucial estimate (Gradient estimate):

Let $R \in W_e$. Expand:

$$Ef = \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} (f)_{Q^*} \varphi_Q = \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} [(f)_{Q^*} - (f)_{R^*}] \varphi_Q + (f)_{R^*} \quad \text{on } R.$$

Implies

$$\|\nabla Ef\|_{p,R} \leq \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} \|(f)_{Q^*} - (f)_{R^*}\|_{p,R} \underbrace{\ell(Q)^{-1}}_{\text{need to compensate}}.$$

Crucial estimate (Gradient estimate):

Let $R \in W_e$. Expand:

$$Ef = \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} (f)_{Q^*} \varphi_Q = \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} [(f)_{Q^*} - (f)_{R^*}] \varphi_Q + (f)_{R^*} \quad \text{on } R.$$

Implies

$$\|\nabla Ef\|_{p,R} \leq \sum_{\substack{Q \in W_e \\ Q \cap R \neq \emptyset}} \|(f)_{Q^*} - (f)_{R^*}\|_{p,R} \underbrace{\ell(Q)^{-1}}_{\text{need to compensate}}$$

Idea

Use Poincaré type estimate for $||(f)_{Q^*} - (f)_{R^*}||_{p,R}$.

Definition

Call O an (ε, δ) -domain, if all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in O satisfying

(a)
$$len(\gamma) \leq \varepsilon^{-1} |x - y|$$
 (b) $d(z, \partial O) \geq \frac{\varepsilon |x - z| |y - z|}{|x - y|}$ $z \in \gamma$.

Definition

Call O an (ε, δ) -domain, if all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in O satisfying

(a)
$$len(\gamma) \leq \varepsilon^{-1}|x-y|$$
 (b) $d(z,\partial O) \geq \frac{\varepsilon|x-z||y-z|}{|x-y|}$ $z \in \gamma$.

Consequence: $Q, R \in W_e$ with $Q \cap R \neq \emptyset$ implies Q^* and R^* can be connected by chain of interior cubes of bounded length!

Definition

Call O an (ε, δ) -domain, if all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in O satisfying

(a)
$$len(\gamma) \leq \varepsilon^{-1} |x - y|$$
 (b) $d(z, \partial O) \geq \frac{\varepsilon |x - z| |y - z|}{|x - y|}$ $z \in \gamma$.

Consequence: $Q, R \in W_e$ with $Q \cap R \neq \emptyset$ implies Q^* and R^* can be connected by chain of interior cubes of bounded length!

Poincaré over this chain implies

$$\|(f)_{Q^*}-(f)_{R^*}\|_{p,R} \lesssim \ell(Q) \|\nabla f\|_{p,\text{chain}} \checkmark$$

Assumption

Assume that all $x,y\in O$ with $|x-y|<\delta$ can be connected by path γ in O satisfying

(a)
$$len(\gamma) \leq \varepsilon^{-1} |x - y|$$
 (b) $d(z, \partial O) \geq \frac{\varepsilon |x - z| |y - z|}{|x - y|}$ $z \in \gamma$.

Assumption

Assume that all $x,y\in O$ with $|x-y|<\delta$ can be connected by path γ in O satisfying

(a)
$$len(\gamma) \le \varepsilon^{-1}|x-y|$$
 (b) $d(z, \partial Q N) \ge \frac{\varepsilon|x-z||y-z|}{|x-y|}$ $z \in \gamma$.

Assumption

Assume that all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in $\bigotimes \mathbb{R}^d \setminus N$ satisfying

(a)
$$len(\gamma) \le \varepsilon^{-1}|x-y|$$
 (b) $d(z, \partial Q N) \ge \frac{\varepsilon|x-z||y-z|}{|x-y|}$ $z \in \gamma$.

Assumption

Assume that all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in $\bigotimes \mathbb{R}^d \setminus N$ satisfying

(a)
$$len(\gamma) \leq \varepsilon^{-1}|x-y|$$
 (b) $d(z, \partial Q, N) \geq \frac{\varepsilon|x-z||y-z|}{|x-y|}$ $z \in \gamma$.

This poses some problems:

• Paths are adapted to a different Whitney decomposition

Assumption

Assume that all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in $\bigotimes \mathbb{R}^d \setminus N$ satisfying

(a)
$$len(\gamma) \le \varepsilon^{-1} |x - y|$$
 (b) $d(z, \partial Q N) \ge \frac{\varepsilon |x - z| |y - z|}{|x - y|}$ $z \in \gamma$.

This poses some problems:

• Paths are adapted to a different Whitney decomposition

Question

Use Whitney decomposition of $\mathbb{R}^d \times N$ as interior cubes W_i ?

Assumption

Assume that all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in $\bigotimes \mathbb{R}^d \setminus N$ satisfying

(a)
$$len(\gamma) \le \varepsilon^{-1} |x - y|$$
 (b) $d(z, \partial Q, N) \ge \frac{\varepsilon |x - z| |y - z|}{|x - y|}$ $z \in \gamma$.

This poses some problems:

• Paths are adapted to a different Whitney decomposition

Question

Use Whitney decomposition of $\mathbb{R}^d \setminus N$ as interior cubes W_i ?

• metric properties of interior and exterior cubes become incompatible!

Assumption

Assume that all $x, y \in O$ with $|x - y| < \delta$ can be connected by path γ in $\bigotimes \mathbb{R}^d \setminus N$ satisfying

(a)
$$len(\gamma) \le \varepsilon^{-1} |x - y|$$
 (b) $d(z, \partial \mathcal{Q} N) \ge \frac{\varepsilon |x - z| |y - z|}{|x - y|}$ $z \in \gamma$.

This poses some problems:

• Paths are adapted to a different Whitney decomposition

Question

Use Whitney decomposition of $\mathbb{R}^d \setminus N$ as interior cubes W_i ?

- metric properties of interior and exterior cubes become incompatible!
- path condition gives no information on interior cubes outside O...

Put

$$W_{e,\text{new}} = \{Q \in W_e : d(Q, N) < Bd(Q, D)\}$$

Heuristic: exterior cubes form sector around N

Put

$$W_{e,\text{new}} = \{Q \in W_e : d(Q, N) < Bd(Q, D)\}$$

Heuristic: exterior cubes form sector around N

 \implies size of cubes comparable to distance to N \checkmark

Put

$$W_{e,\text{new}} = \{Q \in W_e : d(Q, N) < Bd(Q, D)\}$$

Heuristic: exterior cubes form sector around N

 \implies size of cubes comparable to distance to N \checkmark

New problem

How to treat boundary cubes of sector?

Put

$$W_{e,\text{new}} = \{Q \in W_e : d(Q, N) < Bd(Q, D)\}$$

Heuristic: exterior cubes form sector around N

 \implies size of cubes comparable to distance to N \checkmark

New problem

How to treat boundary cubes of sector?

• $R \in W_e$ with $d(R, N) \ge Bd(R, D)$: there is no R^* to smuggle in for Poincaré...

Put

$$W_{e,\text{new}} = \{Q \in W_e : d(Q, N) < Bd(Q, D)\}$$

Heuristic: exterior cubes form sector around N

 \implies size of cubes comparable to distance to N \checkmark

New problem

How to treat boundary cubes of sector?

- $R \in W_e$ with $d(R, N) \ge Bd(R, D)$: there is no R^* to smuggle in for Poincaré...
- B large → angle between sector and D small

Put

$$W_{e,\text{new}} = \{Q \in W_e : d(Q, N) < Bd(Q, D)\}$$

Heuristic: exterior cubes form sector around N

 \implies size of cubes comparable to distance to N \checkmark

New problem

How to treat boundary cubes of sector?

- *R* ∈ *W_e* with *d*(*R*, *N*) ≥ *Bd*(*R*, *D*): there is no *R*^{*} to smuggle in for Poincaré... ☺
- B large \sim angle between sector and D small
- upshot: use Dirichlet Poincaré instead ©

Whitney cube disjoint to $O \rightsquigarrow$ no information from Assumption

Whitney cube disjoint to $O \rightsquigarrow$ no information from Assumption SBetter definition of interior cubes: need to intersect O.

Whitney cube disjoint to $O \rightsquigarrow$ no information from Assumption SBetter definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O?

Whitney cube disjoint to $O \rightsquigarrow$ no information from Assumption \bigcirc Better definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O?

• Introduce "quasi-hyperbolic distance condition".

Whitney cube disjoint to $O \rightsquigarrow$ no information from Assumption SBetter definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O?

- Introduce "quasi-hyperbolic distance condition".
- Consequence: Can go back to O in an "efficient" way.

Whitney cube disjoint to $O \rightsquigarrow$ no information from Assumption SBetter definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O?

- Introduce "quasi-hyperbolic distance condition".
- Consequence: Can go back to O in an "efficient" way.
- Can always construct interior cubes intersecting O this way

Part 2: extension operator for $W_D^{s,p}(O)$, where $s \in (0,1)$

Fractional Sobolev spaces - pure Neumann

Let $s \in (0,1)$. The space $W^{s,p}(O)$ consists of f measurable with

$$\|f\|_{s,p}^{p} = \|f\|_{p}^{p} + \int_{\substack{x,y \in O \\ |x-y|<1}} \left|\frac{f(x) - f(y)}{|x-y|^{s}}\right|^{p} \frac{dx \, dy}{|x-y|^{d}} < \infty.$$

Fractional Sobolev spaces - pure Neumann

Let $s \in (0,1)$. The space $W^{s,p}(O)$ consists of f measurable with

$$\|f\|_{s,p}^{p} = \|f\|_{p}^{p} + \int_{\substack{x,y \in O \\ |x-y| < 1}} \left| \frac{f(x) - f(y)}{|x-y|^{s}} \right|^{p} \frac{dx \, dy}{|x-y|^{d}} < \infty.$$

Zhou's result

There exists linear extension operator $\iff O$ satisfies interior thickness condition

Here, call O interior thick, if

$$\exists C > 0 \ \forall x \in O \ \forall r \in (0,1]: \quad |B(x,r) \cap O| \ge C|B(x,r)|.$$

Define subspace $W_D^{s,p}(O)$ of $W^{s,p}(O)$ using condition

$$\int_{x\in O}\left|\frac{f(x)}{d(x,D)^{s}}\right|^{p}dx<\infty.$$

Define subspace $W_D^{s,p}(O)$ of $W^{s,p}(O)$ using condition

$$\int_{x\in O}\left|\frac{f(x)}{d(x,D)^{\mathfrak{s}}}\right|^{p}dx<\infty.$$

Goal

Construct linear extension operator $W_D^{s,p}(O) \to W^{s,p}(\mathbb{R})$ using only geometric quality in N.

Define subspace $W_D^{s,p}(O)$ of $W^{s,p}(O)$ using condition

$$\int_{x\in O}\left|\frac{f(x)}{d(x,D)^{\mathfrak{s}}}\right|^{p}dx<\infty.$$

Goal

Construct linear extension operator $W_D^{s,p}(O) \to W^{s,p}(\mathbb{R})$ using only geometric quality in N.

Observation: interior thickness condition can be defined with $x \in \partial O$.

Define subspace $W_D^{s,p}(O)$ of $W^{s,p}(O)$ using condition

$$\int_{x\in O}\left|\frac{f(x)}{d(x,D)^{\mathfrak{s}}}\right|^{p}dx<\infty.$$

Goal

Construct linear extension operator $W_D^{s,p}(O) \to W^{s,p}(\mathbb{R})$ using only geometric quality in N.

Observation: interior thickness condition can be defined with $x \in \partial O$. \Rightarrow assume *thickness condition in N* as follows:

 $\exists C > 0 \ \forall x \in N \ \forall r \in (0,1]: \quad |B(x,r) \cap O| \geq C|B(x,r)|.$

Idea: Want to reduce to Zhou's result.

Idea: Want to reduce to Zhou's result.

• Construct suitable **O** ⊇ *O* interior thick → use thickness in *N*

Idea: Want to reduce to Zhou's result.

- Construct suitable O ⊇ O interior thick
 ~ use thickness in N
- Extend from *O* to **O** by zero → use fractional Hardy term

Idea: Want to reduce to Zhou's result.

- Construct suitable **O** ⊇ *O* interior thick → use thickness in *N*
- Extend from *O* to **O** by zero → use fractional Hardy term
- Use Zhou's result on **O**.

Construction of ${\bf 0}$

Question

Are Whitney cubes still our friend?

Construction of ${\bf 0}$

Question

Are Whitney cubes still our friend?

Yes!

Question

Are Whitney cubes still our friend?

Yes!

Let $\{Q_j\}_j$ Whitney decomposition of $\mathbb{R}^d \setminus \overline{N}$. Put $\Sigma = \{Q_j : Q_j \text{ touches } O\}.$

Define $\mathbf{O} = O \cup \left(\bigcup_{Q \in \Sigma} Q \setminus D \right)$. Claim: \mathbf{O} is interior thick.

Question

Are Whitney cubes still our friend?

Yes!

Let $\{Q_j\}_j$ Whitney decomposition of $\mathbb{R}^d \setminus \overline{N}$. Put $\Sigma = \{Q_j : Q_j \text{ touches } O\}.$

Define $\mathbf{O} = O \cup \left(\bigcup_{Q \in \Sigma} Q \setminus D \right)$. Claim: \mathbf{O} is interior thick.

• Only need to check in new boundary.

Question

Are Whitney cubes still our friend?

Yes!

Let $\{Q_j\}_j$ Whitney decomposition of $\mathbb{R}^d \setminus \overline{N}$. Put $\Sigma = \{Q_j: Q_j \text{ touches } O\}.$

Define $\mathbf{O} = O \cup \left(\bigcup_{Q \in \Sigma} Q \setminus D \right)$. Claim: \mathbf{O} is interior thick.

- Only need to check in new boundary.
- r small compared to size of Q \checkmark

Question

Are Whitney cubes still our friend?

Yes!

Let $\{Q_j\}_j$ Whitney decomposition of $\mathbb{R}^d \setminus \overline{N}$. Put $\Sigma = \{Q_j : Q_j \text{ touches } O\}.$

Define $\mathbf{O} = O \cup \left(\bigcup_{Q \in \Sigma} Q \setminus D \right)$. Claim: \mathbf{O} is interior thick.

- Only need to check in new boundary.
- r small compared to size of Q \checkmark
- r large compared to size of Q: Whitney \implies ball intersects N \checkmark

Extension by zero

Let $f \in W_D^{s,p}(O)$ and F its zero extension to **O**.

Need to estimate

$$\|F\|_{s,p}^{p} = \|f\|_{s,p}^{p} + 2 \int_{\substack{x \in O, y \in (\mathbf{0} \smallsetminus O) \\ |x-y| < 1}} \left| \frac{f(x)}{|x-y|^{s}} \right|^{p} \frac{dx \, dy}{|x-y|^{d}} + 0.$$

Extension by zero

Let $f \in W_D^{s,p}(O)$ and F its zero extension to **O**.

Need to estimate

$$\|F\|_{s,p}^{p} = \|f\|_{s,p}^{p} + 2 \int_{\substack{x \in O, y \in (\mathbf{0} \setminus O) \\ |x-y| < 1}} \left| \frac{f(x)}{|x-y|^{s}} \right|^{p} \frac{dx \, dy}{|x-y|^{d}} + 0.$$

Claim: One has $|x - y| \ge \frac{1}{2}d(x, D)$.

Extension by zero

Let $f \in W_D^{s,p}(O)$ and F its zero extension to **O**.

Need to estimate

$$\|F\|_{s,p}^{p} = \|f\|_{s,p}^{p} + 2 \int_{\substack{x \in O, y \in (\mathbf{0} \setminus O) \\ |x-y| < 1}} \left| \frac{f(x)}{|x-y|^{s}} \right|^{p} \frac{dx \, dy}{|x-y|^{d}} + 0.$$

Claim: One has $|x - y| \ge \frac{1}{2}d(x, D)$. Then:

$$\int_{\substack{x \in O, y \in \mathbf{0} \\ |x-y| < 1}} \left| \frac{f(x)}{|x-y|^s} \right|^p \lesssim \int_{x \in O} \left| \frac{f(x)}{d(x,D)^s} \right|^p dx \checkmark$$

Let
$$x \in O$$
 and $y \in Q \setminus O$, where $Q \in \Sigma$.
Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Let $x \in O$ and $y \in Q \setminus O$, where $Q \in \Sigma$. Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Case 1: |x - y| < diam(Q).

Let $x \in O$ and $y \in Q \setminus O$, where $Q \in \Sigma$. Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Case 1: |x - y| < diam(Q).

• Fix $z \in \partial O$ on line segment from x to y.

Let $x \in O$ and $y \in Q \setminus O$, where $Q \in \Sigma$. Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Case 1: |x - y| < diam(Q).

- Fix $z \in \partial O$ on line segment from x to y.
- $z \in N$ implies

$$d(Q,N) \leq |y-z| \leq |x-y| < diam(Q) \leq d(Q,N).$$

Let $x \in O$ and $y \in Q \setminus O$, where $Q \in \Sigma$.

Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Case 1: |x - y| < diam(Q).

- Fix $z \in \partial O$ on line segment from x to y.
- $z \in N$ implies

$$d(Q,N) \leq |y-z| \leq |x-y| < diam(Q) \leq d(Q,N).$$

• Hence $z \in D$ and $|x - y| \ge |x - z| \ge d(x, D)$.

Let $x \in O$ and $y \in Q \setminus O$, where $Q \in \Sigma$. Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Case 2: $|x - y| \ge diam(Q)$.

Let $x \in O$ and $y \in Q \setminus O$, where $Q \in \Sigma$. Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

- Case 2: $|x y| \ge diam(Q)$.
 - Can pick $z \in Q \cap D$.

Let $x \in O$ and $y \in Q \setminus O$, where $Q \in \Sigma$. Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Case 2: $|x - y| \ge diam(Q)$.

- Can pick $z \in Q \cap D$.
- Estimate

$$|x - z| \le |x - y| + |y - z| \le |x - y| + diam(Q) \le 2|x - y|.$$

Let
$$x \in O$$
 and $y \in Q \setminus O$, where $Q \in \Sigma$.

Want to show: $|x - y| \ge \frac{1}{2}d(x, D)$.

Case 2:
$$|x - y| \ge diam(Q)$$
.

- Can pick $z \in Q \cap D$.
- Estimate

$$|x - z| \le |x - y| + |y - z| \le |x - y| + diam(Q) \le 2|x - y|.$$

• Conclude
$$d(x, D) \leq |x - z| \leq 2|x - y|$$
.

Thanks for your attention!

A digital version of this presentation can be found here:

