sharp geometric conditions for Sobolev extension operators

Sebastian Bechtel
(j.w. R.M. Brown, R. Haller, and P. Tolksdorf)
Delft University of Technology, The Netherlands

November 18, 2022

Motivation

Let $O \subseteq \mathbb{R}^{d}$ open.
Classical question: Does there exist $E: W^{1, p}(O) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ linear \& bounded with $E f=f$ on O ?

Motivation

Let $O \subseteq \mathbb{R}^{d}$ open.
Classical question: Does there exist $E: W^{1, p}(O) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ linear \& bounded with $E f=f$ on O ?

Negative answer: not always, for example $O=B(0,1) \backslash[0,1)$ does not work ${ }^{*}$

Motivation

Let $O \subseteq \mathbb{R}^{d}$ open.
Classical question: Does there exist $E: W^{1, p}(O) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ linear \& bounded with $E f=f$ on O ?

Negative answer: not always, for example $O=B(0,1) \backslash[0,1)$ does not work ${ }^{*}$

Positive answer: OK with some regularity: Lipschitz boundary, (ε, δ)-domain, $\ldots \odot$

Motivation

Let $O \subseteq \mathbb{R}^{d}$ open.
Classical question: Does there exist $E: W^{1, p}(O) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ linear \& bounded with $E f=f$ on O ?

Negative answer: not always, for example $O=B(0,1) \backslash[0,1)$ does not work ${ }^{*}$

Positive answer: OK with some regularity: Lipschitz boundary, (ε, δ)-domain, $\ldots \odot$

Question

What happens if we impose a Dirichlet boundary condition?

Motivation

Define $W_{0}^{1, p}(O)$ as closure of $C_{0}^{\infty}(O)$-functions in $W^{1, p}(O)$.
$E: W_{0}^{1, p}(O) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ linear \& bounded always exists: Just extend by zero!

Motivation

Define $W_{0}^{1, p}(O)$ as closure of $C_{0}^{\infty}(O)$-functions in $W^{1, p}(O)$.
$E: W_{0}^{1, p}(O) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ linear \& bounded always exists: Just extend by zero!

Question
What happens in between natural and Dirichlet boundary conditions?

Motivation

Define $W_{0}^{1, p}(O)$ as closure of $C_{0}^{\infty}(O)$-functions in $W^{1, p}(O)$.
$E: W_{0}^{1, p}(O) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ linear \& bounded always exists: Just extend by zero!

Question

What happens in between natural and Dirichlet boundary conditions?
That is to say: functions stay away from some boundary part $D \subseteq \partial O$. Which sharp geometric condition to impose in $N=\partial O \backslash D$.

Outline

Let $O \subseteq \mathbb{R}^{d}$ open, $D \subseteq \partial O$ closed.
(1) Construction of a $W_{D}^{1, p}(O)$ extension operator with condition in the spirit of Jones. Joint work R.M. Brown, R. Haller, and P. Tolksdorf. Submitted 2021.
(2) construction of a $W_{D}^{s, p}(O)$ extension operator, $s \in(0,1)$, using a density condition. Appeared in Archiv der Mathematik in 2021.

Part 1: extension operator for $W_{D}^{1, p}(O)$

Review of Jones' result

Setup:

- Whitney decomposition of O and \mathbb{R}^{d}, \bar{O}
\leadsto interior cubes W_{i} and exterior cubes W_{e}

For simplicity: assume O unbounded and connected

Review of Jones' result

Setup:

- Whitney decomposition of O and \mathbb{R}^{d}, \bar{O}
\leadsto interior cubes W_{i} and exterior cubes W_{e}
- associate suitable reflected cube $Q^{*} \in W_{i}$ with $Q \in W_{e}$

For simplicity: assume O unbounded and connected

Review of Jones' result

Setup:

- Whitney decomposition of O and \mathbb{R}^{d}, \bar{O}
\leadsto interior cubes W_{i} and exterior cubes W_{e}
- associate suitable reflected cube $Q^{*} \in W_{i}$ with $Q \in W_{e}$
- $\left\{\varphi_{Q}\right\}_{Q \in W_{e}}$ partition of unity of \mathbb{R}^{d}, \bar{O}

Review of Jones' result

Setup:

- Whitney decomposition of O and \mathbb{R}^{d}, \bar{O}
\leadsto interior cubes W_{i} and exterior cubes W_{e}
- associate suitable reflected cube $Q^{*} \in W_{i}$ with $Q \in W_{e}$
- $\left\{\varphi_{Q}\right\}_{Q \in W_{e}}$ partition of unity of \mathbb{R}^{d}, \bar{O}

Then define E via

$$
E f=\sum_{Q \in W_{e}}(f)_{Q^{*}} \varphi_{Q} \quad \text { on } \mathbb{R}^{d} \backslash \bar{O} .
$$

For simplicity: assume O unbounded and connected

Review of Jones' result

Crucial estimate (Gradient estimate):

Review of Jones' result

Crucial estimate (Gradient estimate):

Let $R \in W_{e}$. Expand:

$$
E f=\sum_{\substack{Q \in \mathcal{W}_{e} \\ Q \cap R \neq \varnothing}}(f)_{Q^{*}} \varphi_{Q}=\sum_{\substack{Q \in \mathcal{W}_{e} \\ Q \cap R \neq \varnothing}}\left[(f)_{Q^{*}}-(f)_{R^{*}}\right] \varphi_{Q}+(f)_{R^{*}} \quad \text { on } R .
$$

Review of Jones' result

Crucial estimate (Gradient estimate):

Let $R \in W_{e}$. Expand:

$$
E f=\sum_{\substack{Q \in \mathcal{W}_{e} \\ Q \cap R \neq \varnothing}}(f)_{Q^{*}} \varphi_{Q}=\sum_{\substack{Q \in W_{e} \\ Q \cap R \neq \varnothing}}\left[(f)_{Q^{*}}-(f)_{R^{*}}\right] \varphi_{Q}+(f)_{R^{*}} \quad \text { on } R .
$$

Implies

$$
\|\nabla E f\|_{p, R} \leq \sum_{\substack{Q \in \mathcal{W}_{e} \\ Q \cap R \neq \varnothing}}\left\|(f)_{Q^{*}}-(f)_{R^{*}}\right\|_{p, R} \underbrace{\ell(Q)^{-1}}_{\text {need to compensate }}
$$

Review of Jones' result

Crucial estimate (Gradient estimate):

Let $R \in W_{e}$. Expand:

$$
E f=\sum_{\substack{Q \in \mathcal{W}_{e} \\ Q \cap R \neq \varnothing}}(f)_{Q^{*}} \varphi_{Q}=\sum_{\substack{Q \in W_{e} \\ Q \cap R \neq \varnothing}}\left[(f)_{Q^{*}}-(f)_{R^{*}}\right] \varphi_{Q}+(f)_{R^{*}} \quad \text { on } R .
$$

Implies

$$
\|\nabla E f\|_{p, R} \leq \sum_{\substack{Q \in \mathcal{W}_{e} \\ Q \cap R \neq \varnothing}}\left\|(f)_{Q^{*}}-(f)_{R^{*}}\right\|_{p, R} \underbrace{\ell(Q)^{-1}}_{\text {need to compensate }}
$$

Idea

Use Poincaré type estimate for $\left\|(f)_{Q^{*}}-(f)_{R^{*}}\right\|_{p, R}$.

Review of Jones' result

Definition

Call O an (ε, δ)-domain, if all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in O satisfying

$$
\text { (a) } \operatorname{len}(\gamma) \leq \varepsilon^{-1}|x-y| \quad(b) d(z, \partial O) \geq \frac{\varepsilon|x-z||y-z|}{|x-y|} \quad z \in \gamma \text {. }
$$

Review of Jones' result

Definition

Call O an (ε, δ)-domain, if all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in O satisfying

$$
\text { (a) } \operatorname{len}(\gamma) \leq \varepsilon^{-1}|x-y| \quad(b) d(z, \partial O) \geq \frac{\varepsilon|x-z \| y-z|}{|x-y|} \quad z \in \gamma
$$

Consequence: $Q, R \in W_{e}$ with $Q \cap R \neq \varnothing$ implies Q^{*} and R^{*} can be connected by chain of interior cubes of bounded length!

Review of Jones' result

Definition

Call O an (ε, δ)-domain, if all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in O satisfying

$$
\text { (a) len }(\gamma) \leq \varepsilon^{-1}|x-y| \quad \text { (b) } d(z, \partial O) \geq \frac{\varepsilon|x-z \| y-z|}{|x-y|} \quad z \in \gamma
$$

Consequence: $Q, R \in W_{e}$ with $Q \cap R \neq \varnothing$ implies Q^{*} and R^{*} can be connected by chain of interior cubes of bounded length!

Poincaré over this chain implies

$$
\left\|(f)_{Q^{*}}-(f)_{R^{*}}\right\|_{p, R} \lesssim \ell(Q)\|\nabla f\|_{p, \text { chain }}
$$

Towards mixed boundary conditions

Assumption

Assume that all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in O satisfying

$$
\text { (a) } \operatorname{len}(\gamma) \leq \varepsilon^{-1}|x-y| \quad \text { (b) } d(z, \partial O) \geq \frac{\varepsilon|x-z \| y-z|}{|x-y|} \quad z \in \gamma
$$

Towards mixed boundary conditions

Assumption

Assume that all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in O satisfying

Towards mixed boundary conditions

Assumption

Assume that all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in $\notin \mathbb{R}^{d} \backslash N$ satisfying

$$
\begin{array}{ll}
\text { (a) } \operatorname{len}(\gamma) \leq \varepsilon^{-1}|x-y| & \text { (b) } d(z, \partial Q N) \geq \frac{\varepsilon|x-z||y-z|}{|x-y|} \quad z \in \gamma .
\end{array}
$$

Towards mixed boundary conditions

Assumption

Assume that all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in $\notin \mathbb{R}^{d} \backslash N$ satisfying

$$
\text { (a) } \operatorname{len}(\gamma) \leq \varepsilon^{-1}|x-y| \quad \text { (b) } d(z, \partial Q N) \geq \frac{\varepsilon|x-z||y-z|}{|x-y|} \quad z \in \gamma .
$$

This poses some problems:

- Paths are adapted to a different Whitney decomposition

Towards mixed boundary conditions

Assumption

Assume that all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in $\notin \mathbb{R}^{d} \backslash N$ satisfying

$$
\begin{array}{ll}
\text { (a) } \operatorname{len}(\gamma) \leq \varepsilon^{-1}|x-y| \quad(b) d(z, \not O N) \geq \frac{\varepsilon|x-z \| y-z|}{|x-y|} \quad z \in \gamma . . ~
\end{array}
$$

This poses some problems:

- Paths are adapted to a different Whitney decomposition

Question

Use Whitney decomposition of $\mathbb{R}^{d} \backslash N$ as interior cubes W_{i} ?

Towards mixed boundary conditions

Assumption

Assume that all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in $\notin \mathbb{R}^{d} \backslash N$ satisfying

This poses some problems:

- Paths are adapted to a different Whitney decomposition

Question

Use Whitney decomposition of $\mathbb{R}^{d} \backslash N$ as interior cubes W_{i} ?

- metric properties of interior and exterior cubes become incompatible!

Towards mixed boundary conditions

Assumption

Assume that all $x, y \in O$ with $|x-y|<\delta$ can be connected by path γ in $\notin \mathbb{R}^{d} \backslash N$ satisfying

$$
\begin{array}{ll}
\text { (a) } \operatorname{len}(\gamma) \leq \varepsilon^{-1}|x-y| & \text { (b) } d(z, \partial Q N) \geq \frac{\varepsilon|x-z \| y-z|}{|x-y|} \quad z \in \gamma . . ~
\end{array}
$$

This poses some problems:

- Paths are adapted to a different Whitney decomposition

Question

Use Whitney decomposition of $\mathbb{R}^{d} \backslash N$ as interior cubes W_{i} ?

- metric properties of interior and exterior cubes become incompatible!
- path condition gives no information on interior cubes outside O...

New definition of exterior cubes

Put

$$
W_{e, \text { new }}=\left\{Q \in W_{e}: d(Q, N)<B d(Q, D)\right\}
$$

Heuristic: exterior cubes form sector around N

New definition of exterior cubes

Put

$$
W_{e, \text { new }}=\left\{Q \in W_{e}: d(Q, N)<B d(Q, D)\right\}
$$

Heuristic: exterior cubes form sector around N
\Longrightarrow size of cubes comparable to distance to N

New definition of exterior cubes

Put

$$
W_{e, \text { new }}=\left\{Q \in W_{e}: d(Q, N)<B d(Q, D)\right\}
$$

Heuristic: exterior cubes form sector around N
\Longrightarrow size of cubes comparable to distance to N
New problem
How to treat boundary cubes of sector?

New definition of exterior cubes

Put

$$
W_{e, \text { new }}=\left\{Q \in W_{e}: d(Q, N)<B d(Q, D)\right\}
$$

Heuristic: exterior cubes form sector around N
\Longrightarrow size of cubes comparable to distance to N
New problem
How to treat boundary cubes of sector?

- $R \in W_{e}$ with $d(R, N) \geq B d(R, D)$: there is no R^{*} to smuggle in for Poincaré. . . ©

New definition of exterior cubes

Put

$$
W_{e, \text { new }}=\left\{Q \in W_{e}: d(Q, N)<B d(Q, D)\right\}
$$

Heuristic: exterior cubes form sector around N
\Longrightarrow size of cubes comparable to distance to N
New problem
How to treat boundary cubes of sector?

- $R \in W_{e}$ with $d(R, N) \geq B d(R, D)$: there is no R^{*} to smuggle in for Poincaré. . . ©
- B large \leadsto angle between sector and D small

New definition of exterior cubes

Put

$$
W_{e, \text { new }}=\left\{Q \in W_{e}: d(Q, N)<B d(Q, D)\right\}
$$

Heuristic: exterior cubes form sector around N
\Longrightarrow size of cubes comparable to distance to N
New problem
How to treat boundary cubes of sector?

- $R \in W_{e}$ with $d(R, N) \geq B d(R, D)$: there is no R^{*} to smuggle in for Poincaré. . . ©
- B large \leadsto angle between sector and D small
- upshot: use Dirichlet Poincaré instead \odot

Reflected cubes disjoint to O

Whitney cube disjoint to $O \leadsto$ no information from Assumption ©

Reflected cubes disjoint to O

Whitney cube disjoint to $O \leadsto$ no information from Assumption ()
Better definition of interior cubes: need to intersect O.

Reflected cubes disjoint to O

Whitney cube disjoint to $O \leadsto$ no information from Assumption ()
Better definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O ?

Reflected cubes disjoint to O

Whitney cube disjoint to $O \leadsto$ no information from Assumption ()
Better definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O ?

- Introduce "quasi-hyperbolic distance condition".

Reflected cubes disjoint to O

Whitney cube disjoint to $O \leadsto$ no information from Assumption ()
Better definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O ?

- Introduce "quasi-hyperbolic distance condition".
- Consequence: Can go back to O in an "efficient" way.

Reflected cubes disjoint to O

Whitney cube disjoint to $O \leadsto$ no information from Assumption $)^{-}$
Better definition of interior cubes: need to intersect O.

Question

So what if path from Assumption runs out of O ?

- Introduce "quasi-hyperbolic distance condition".
- Consequence: Can go back to O in an "efficient" way.
- Can always construct interior cubes intersecting O this way $)^{()}$

Part 2: extension operator for $W_{D}^{s, p}(O)$, where $s \in(0,1)$

Fractional Sobolev spaces - pure Neumann

Let $s \in(0,1)$. The space $W^{s, p}(O)$ consists of f measurable with

$$
\|f\|_{s, p}^{p}=\|f\|_{p}^{p}+\int_{\substack{x, y \in O \\|x-y|<1}}\left|\frac{f(x)-f(y)}{|x-y|^{s}}\right|^{p} \frac{d x d y}{|x-y|^{d}}<\infty .
$$

Fractional Sobolev spaces - pure Neumann

Let $s \in(0,1)$. The space $W^{s, p}(O)$ consists of f measurable with

$$
\|f\|_{s, p}^{p}=\|f\|_{p}^{p}+\int_{\substack{x, y \in O \\|x-y|<1}}\left|\frac{f(x)-f(y)}{|x-y|^{s}}\right|^{p} \frac{d x d y}{|x-y|^{d}}<\infty .
$$

Zhou's result

There exists linear extension operator $\Longleftrightarrow O$ satisfies interior thickness condition

Here, call O interior thick, if

$$
\exists C>0 \forall x \in O \forall r \in(0,1]: \quad|B(x, r) \cap O| \geq C|B(x, r)| .
$$

Fractional Sobolev spaces - mixed BC

Define subspace $W_{D}^{s, p}(O)$ of $W^{s, p}(O)$ using condition

$$
\int_{x \in O}\left|\frac{f(x)}{d(x, D)^{s}}\right|^{p} d x<\infty
$$

Fractional Sobolev spaces - mixed BC

Define subspace $W_{D}^{s, p}(O)$ of $W^{s, p}(O)$ using condition

$$
\int_{x \in O}\left|\frac{f(x)}{d(x, D)^{s}}\right|^{p} d x<\infty
$$

Goal

Construct linear extension operator $W_{D}^{s, p}(O) \rightarrow W^{s, p}(\mathbb{R})$ using only geometric quality in N.

Fractional Sobolev spaces - mixed BC

Define subspace $W_{D}^{s, p}(O)$ of $W^{s, p}(O)$ using condition

$$
\int_{x \in O}\left|\frac{f(x)}{d(x, D)^{s}}\right|^{p} d x<\infty
$$

Goal

Construct linear extension operator $W_{D}^{s, p}(O) \rightarrow W^{s, p}(\mathbb{R})$ using only geometric quality in N.

Observation: interior thickness condition can be defined with $x \in \partial O$.

Fractional Sobolev spaces - mixed BC

Define subspace $W_{D}^{s, p}(O)$ of $W^{s, p}(O)$ using condition

$$
\int_{x \in O}\left|\frac{f(x)}{d(x, D)^{s}}\right|^{p} d x<\infty
$$

Goal

Construct linear extension operator $W_{D}^{s, p}(O) \rightarrow W^{s, p}(\mathbb{R})$ using only geometric quality in N.

Observation: interior thickness condition can be defined with $x \in \partial O$. \leadsto assume thickness condition in N as follows:

$$
\exists C>0 \forall x \in N \forall r \in(0,1]: \quad|B(x, r) \cap O| \geq C|B(x, r)| .
$$

Strategy for our construction

Idea: Want to reduce to Zhou's result.

Strategy for our construction

Idea: Want to reduce to Zhou's result.

- Construct suitable $\mathbf{O} \supseteq O$ interior thick \leadsto use thickness in N

Strategy for our construction

Idea: Want to reduce to Zhou's result.

- Construct suitable $\mathbf{O} \supseteq O$ interior thick \leadsto use thickness in N
- Extend from \mathbf{O} to \mathbf{O} by zero
\leadsto use fractional Hardy term

Strategy for our construction

Idea: Want to reduce to Zhou's result.

- Construct suitable $\mathbf{O} \supseteq O$ interior thick \leadsto use thickness in N
- Extend from O to \mathbf{O} by zero
\leadsto use fractional Hardy term
- Use Zhou's result on O.

Construction of \mathbf{O}

Question
Are Whitney cubes still our friend?

Construction of \mathbf{O}

Question
Are Whitney cubes still our friend?

Yes!

Construction of \mathbf{O}

Question

Are Whitney cubes still our friend?

Yes!

Let $\left\{Q_{j}\right\}_{j}$ Whitney decomposition of \mathbb{R}^{d}, \bar{N}. Put $\Sigma=\left\{Q_{j}: Q_{j}\right.$ touches $\left.O\right\}$.

Define $\mathbf{O}=O \cup\left(\cup_{Q \in \Sigma} Q \backslash D\right)$. Claim: \mathbf{O} is interior thick.

Construction of \mathbf{O}

Question

Are Whitney cubes still our friend?

Yes!

Let $\left\{Q_{j}\right\}_{j}$ Whitney decomposition of \mathbb{R}^{d}, \bar{N}. Put $\Sigma=\left\{Q_{j}: Q_{j}\right.$ touches $\left.O\right\}$.

Define $\mathbf{O}=O \cup\left(\cup_{Q \in \Sigma} Q \backslash D\right)$. Claim: \mathbf{O} is interior thick.

- Only need to check in new boundary.

Construction of \mathbf{O}

Question

Are Whitney cubes still our friend?

Yes!

Let $\left\{Q_{j}\right\}_{j}$ Whitney decomposition of $\mathbb{R}^{d} \backslash \bar{N}$. Put $\Sigma=\left\{Q_{j}: Q_{j}\right.$ touches $\left.O\right\}$.

Define $\mathbf{O}=O \cup\left(\cup_{Q \in \Sigma} Q \backslash D\right)$. Claim: \mathbf{O} is interior thick.

- Only need to check in new boundary.
- r small compared to size of Q

Construction of \mathbf{O}

Question

Are Whitney cubes still our friend?

Yes!

Let $\left\{Q_{j}\right\}_{j}$ Whitney decomposition of \mathbb{R}^{d}, \bar{N}. Put
$\Sigma=\left\{Q_{j}: Q_{j}\right.$ touches $\left.O\right\}$.
Define $\mathbf{O}=O \cup\left(\cup_{Q \in \Sigma} Q \backslash D\right)$. Claim: \mathbf{O} is interior thick.

- Only need to check in new boundary.
- r small compared to size of Q
- r large compared to size of Q : Whitney \Longrightarrow ball intersects N

Extension by zero

Let $f \in W_{D}^{s, p}(O)$ and F its zero extension to \mathbf{O}.
Need to estimate

$$
\|F\|_{s, p}^{p}=\|f\|_{s, p}^{p}+2 \int_{\substack{x \in O, y \in(\mathbf{O} \backslash O) \\|x-y|<1}}\left|\frac{f(x)}{|x-y|^{s}}\right|^{p} \frac{d x d y}{|x-y|^{d}}+0
$$

Extension by zero

Let $f \in W_{D}^{s, p}(O)$ and F its zero extension to \mathbf{O}.
Need to estimate

$$
\|F\|_{s, p}^{p}=\|f\|_{s, p}^{p}+2 \int_{x \in O, y \in(\mathbf{O} \backslash O)}^{|x-y|<1}\left|\frac{f(x)}{|x-y|^{s}}\right|^{p} \frac{d x d y}{|x-y|^{d}}+0
$$

Claim: One has $|x-y| \geq \frac{1}{2} d(x, D)$.

Extension by zero

Let $f \in W_{D}^{s, p}(O)$ and F its zero extension to \mathbf{O}.
Need to estimate

$$
\|F\|_{s, p}^{p}=\|f\|_{s, p}^{p}+\left.2 \int_{x \in O, y \in(\mathbf{0} \backslash O)}^{|x-y|<1}| | \frac{f(x)}{|x-y|^{s}}\right|^{p} \frac{d x d y}{|x-y|^{d}}+0
$$

Claim: One has $|x-y| \geq \frac{1}{2} d(x, D)$. Then:

$$
\int_{\substack{x \in O, y \in \mathbf{O} \\|x-y|<1}}\left|\frac{f(x)}{|x-y|^{s}}\right|^{p} \lesssim \int_{x \in O}\left|\frac{f(x)}{d(x, D)^{s}}\right|^{p} d x
$$

A last lemma (found on the way back from Jena in 2020)

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 1: $|x-y|<\operatorname{diam}(Q)$.

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 1: $|x-y|<\operatorname{diam}(Q)$.

- Fix $z \in \partial O$ on line segment from x to y.

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 1: $|x-y|<\operatorname{diam}(Q)$.

- Fix $z \in \partial O$ on line segment from x to y.
- $z \in N$ implies

$$
d(Q, N) \leq|y-z| \leq|x-y|<\operatorname{diam}(Q) \leq d(Q, N) \text {. }
$$

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 1: $|x-y|<\operatorname{diam}(Q)$.

- Fix $z \in \partial O$ on line segment from x to y.
- $z \in N$ implies

$$
d(Q, N) \leq|y-z| \leq|x-y|<\operatorname{diam}(Q) \leq d(Q, N)
$$

- Hence $z \in D$ and $|x-y| \geq|x-z| \geq d(x, D)$.

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 2: $|x-y| \geq \operatorname{diam}(Q)$.

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 2: $|x-y| \geq \operatorname{diam}(Q)$.

- Can pick $z \in Q \cap D$.

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 2: $|x-y| \geq \operatorname{diam}(Q)$.

- Can pick $z \in Q \cap D$.
- Estimate

$$
|x-z| \leq|x-y|+|y-z| \leq|x-y|+\operatorname{diam}(Q) \leq 2|x-y| .
$$

A last lemma (found on the way back from Jena in 2020)

Let $x \in O$ and $y \in Q \backslash O$, where $Q \in \Sigma$.
Want to show: $|x-y| \geq \frac{1}{2} d(x, D)$.
Case 2: $|x-y| \geq \operatorname{diam}(Q)$.

- Can pick $z \in Q \cap D$.
- Estimate

$$
|x-z| \leq|x-y|+|y-z| \leq|x-y|+\operatorname{diam}(Q) \leq 2|x-y| .
$$

- Conclude $d(x, D) \leq|x-z| \leq 2|x-y|$.

Thanks for your attention!
A digital version of this presentation can be found here:

