
Existence for quasilinear systems of SPDEs
in a variational setting

Sebastian Bechtel

(j.w. M. Veraar)

Delft University of Technology, The Netherlands

25th of June, 2024



Our problem for today

Consider SPDE

du =
[
∂i (aij(u)∂ju) + ∂iΦi (u) + φ(u)

]
dt

+
∑
n≥1

[
bn,j(u)∂ju + gn(u)

]
dwn,

u(0) = u0,

on D ⊆ Rd subject to Dirichlet BC.

Coefficients aαβij , bαβn,j are symmetric, no smoothness, and elliptic:(
aαβij (t, x , y)− 1

2
bγαn,i (t, x , y

α)bγβn,j (t, x , y
α)
)
ξαi ξ

β
j ≥ λ|ξ|

2.

Question

Does a solution to this system of SPDEs exist?
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Some inspiration from the deterministic world

Disser, ter Elst, Rehberg JDE ’17

u′ − ∂i (aij(u)∂ju) = f ,

u(0) = 0,

on D ⊆ Rd subject to mixed BC.

Slightly different focus: no semi-linear terms like φ(u), no non-trivial
initial value, but more general BC

Tools used:

1 well-posedness for linear equation with f ∈ Lp(0,T ;H−1(D))
where p > 2,

2 Schauder’s fixed point theorem.
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deterministic extrapolation result . . .

. . . and why it fails for SPDEs!

For p ∈ (1,∞) put

Ep = Lp(0,T ;H−1(D)),

Vp = Lp(0,T ;H1(D)) ∩W 1,p(0,T ;H−1(D)).

Parabolic operator

∂t − ∂i (aij∂j) : Vp → Ep

bounded for all p ∈ (1,∞).

Moreover: ∂t − ∂i (aij∂j) invertible V2 → E2 by Lax–Milgram lemma.

4 / 17



deterministic extrapolation result . . .

. . . and why it fails for SPDEs!

For p ∈ (1,∞) put

Ep = Lp(0,T ;H−1(D)),

Vp = Lp(0,T ;H1(D)) ∩W 1,p(0,T ;H−1(D)).

Parabolic operator

∂t − ∂i (aij∂j) : Vp → Ep

bounded for all p ∈ (1,∞).

Moreover: ∂t − ∂i (aij∂j) invertible V2 → E2 by Lax–Milgram lemma.

4 / 17



deterministic extrapolation result . . .

. . . and why it fails for SPDEs!

For p ∈ (1,∞) put

Ep = Lp(0,T ;H−1(D)),

Vp = Lp(0,T ;H1(D)) ∩W 1,p(0,T ;H−1(D)).

Parabolic operator

∂t − ∂i (aij∂j) : Vp → Ep

bounded for all p ∈ (1,∞).

Moreover: ∂t − ∂i (aij∂j) invertible V2 → E2 by Lax–Milgram lemma.

4 / 17



deterministic extrapolation result . . .

. . . and why it fails for SPDEs!

For p ∈ (1,∞) put

Ep = Lp(0,T ;H−1(D)),

Vp = Lp(0,T ;H1(D)) ∩W 1,p(0,T ;H−1(D)).

Parabolic operator

∂t − ∂i (aij∂j) : Vp → Ep

bounded for all p ∈ (1,∞).

Moreover: ∂t − ∂i (aij∂j) invertible V2 → E2 by Lax–Milgram lemma.

4 / 17



deterministic extrapolation result . . .

. . . and why it fails for SPDEs!

For p ∈ (1,∞) put

Ep = Lp(0,T ;H−1(D)),

Vp = Lp(0,T ;H1(D)) ∩W 1,p(0,T ;H−1(D)).

Parabolic operator

∂t − ∂i (aij∂j) : Vp → Ep

bounded for all p ∈ (1,∞).

Moreover: ∂t − ∂i (aij∂j) invertible V2 → E2 by Lax–Milgram lemma.

4 / 17



deterministic extrapolation result . . .
. . . and why it fails for SPDEs!

Complex interpolation scale ↔ family of spaces “with a Riesz–
Thorin theorem”

Fact: (Ep)p∈(1,∞) and (Vp)p∈(1,∞) are complex interpolation scales

Lemma (Sneiberg)

Let T bounded between interpolation scales (Xi )i∈(a,b) and (Yi )i∈(a,b).
If T : Xi∗ → Yi∗ invertible, then T : Xi → Yi invertible for all
i ∈ (i∗ − ε, i∗ + ε).

Upshot: ∂t − ∂i (aij∂j) invertible V2+ε → E2+ε.
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deterministic extrapolation result . . .
. . . and why it fails for SPDEs!

Now consider linear SPDE:

du = (Au + f ) dt + (Bu + g) dW .

Right-hand side: consists of deterministic and stochastic parts
 SPDE is not operator from solution to data space!

But: Set Ep = Lp(Ω× (0,T );H−1(D))× Lp(Ω× (0,T );L2(U, L2(D))),
Vp analogous, solution operator

S : E2 3 (f , g) 7→ u ∈ V2

bounded, linear.

Here we can attack! (later)
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deterministic compactness argument . . .

. . . and why it fails for SPDEs!

Ordinary variational regularity: V2 ⊆ C ([0,T ]; L2(D))
 quasi-linearity ∂i (aij(u)∂ju) defined, but not more . . .

For p > 2: Sobolev + Arzela–Ascoli

Vp ⊆ C ε([0,T ];Hδ(D))
c
⊆ C ([0,T ]; L2(D))

For v ∈ C ([0,T ]; L2(D)) solve u′ − ∂i (aij(v)∂ju) = f .

Mapping v 7→ u compact =⇒ has fixed point u (by Schauder) such
that

u′ − ∂i (aij(u)∂ju) = f .
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deterministic compactness argument . . .
. . . and why it fails for SPDEs!

One has: Vp = Lp(Ω; Lp(0,T ;H1(D)) ∩ C ([0,T ];B
1−2/p
2,p (D))).

No topology on probability space Ω  compactness more delicate!

Instead: stochastic compactness method (for example
Debussche–Hofmanova–Vovelle)

1 Consider suitable “approximating” problems.

2 Approximate solutions un have tight laws ( form of compactness).

3 Prokhorov + Skorohod: un → u almost surely on Ω̃.

4 Identify u as solution of original SPDE.
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Approximation of Debussche–Hofmanova–Vovelle

Approximate second order SPDE by fourth order SPDEs.

Upshot: quasi-linearity is lower order  approximate problems easy to
solve

Counterarguments:

1 morally: fourth order approximation less natural,

2 initial value more regular (adapted to fourth order),

3 higher order introduces more boundary conditions ( work on T),

4 just L2-estimates for ∇un ( identification of solution harder).

If only we could extrapolate variational regularity . . .
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extrapolation of variational solutions

Let

• V ⊆ H ⊆ V ∗ Gelfand triple,

• W a U-cylindrical Brownian motion,

• A : Ω× (0,T )→ L(V ,V ∗) symmetric, bounded,

• B : Ω× (0,T )→ L2(U,H) bounded.

Consider

du = (Au + f ) dt + (Bu + g) dW ,

u(0) = u0.

Only assume ellipticity:

〈Av , v〉 − 1

2
‖Bv‖2L2(U,H) ≥ λ‖v‖

2
V −M‖v‖2H .

(Can reduce to M = 0.)
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extrapolation of variational solutions

Idea for extrapolation: Böhnlein–Egert ’23 (Gaussian bounds for heat
semigroups)

• S ⊆ C unit strip.

• Craft S 3 z 7→ (A(z),B(z)) analytic

• with A(θ) = A and B(θ) = B for
θ ∈ (0, 1).

Red line: perturbation of autonomous case
 Lp-maximal regularity for all p

Blue line: (still) variational case.

Re z

Im z

10 θ

Upshot: Stein interpolation of solution operator between L2 and Lp

=⇒ L2+ε-maximal regularity for (A(θ),B(θ)) = (A,B).
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Idea for extrapolation: Böhnlein–Egert ’23 (Gaussian bounds for heat
semigroups)

• S ⊆ C unit strip.

• Craft S 3 z 7→ (A(z),B(z)) analytic

• with A(θ) = A and B(θ) = B for
θ ∈ (0, 1).

Red line: perturbation of autonomous case
 Lp-maximal regularity for all p

Blue line: (still) variational case.

Re z

Im z

10 θ

Upshot: Stein interpolation of solution operator between L2 and Lp

=⇒ L2+ε-maximal regularity for (A(θ),B(θ)) = (A,B).

12 / 17



extrapolation of variational solutions
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Idea for extrapolation: Böhnlein–Egert ’23 (Gaussian bounds for heat
semigroups)

• S ⊆ C unit strip.

• Craft S 3 z 7→ (A(z),B(z)) analytic

• with A(θ) = A and B(θ) = B for
θ ∈ (0, 1).

Red line: perturbation of autonomous case
 Lp-maximal regularity for all p

Blue line: (still) variational case.

Re z

Im z

10 θ

Upshot: Stein interpolation of solution operator between L2 and Lp

=⇒ L2+ε-maximal regularity for (A(θ),B(θ)) = (A,B).

12 / 17



extrapolation of variational solutions – main results

Theorem (B., Veraar)

Exists p > 2 depending on ellipticity of (A,B) such that for

f ∈ Lp(Ω× (0,T );V ∗), g ∈ Lp(Ω× (0,T );L2(U,H)),

u0 ∈ Lp(Ω; (H,V )1−2/p,p)

unique variational solution u satisfies

u ∈ Lp(Ω;C ε([0,T ]; [H,V ]δ)).

Theorem (B., Veraar)

The laws of{
u solution: (A,B) uniformly elliptic, ‖f ‖, ‖g‖, ‖u0‖ ≤ K

}
are tight on C ([0,T ];H).
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What about this symmetry assumption?

Fix reference operator A0 (for example 1−∆).

Elliptic =⇒ multiple of (A,B) small perturbation of (A0, 0).

Define

Az = µ
(
F (z)(µ−1A− A0) + A0

)
& Bz = F (z)

1
2B.

Idea: choose F (z) so that difference of µ−1(A(z),B(z)) to (A0, 0)
smaller than (strictly positive) lower bound of (A0, 0).

Difficulty: Bz in ellipticity quadratic  produces |F (z)|, but F (z) in Az

has a complex phase . . .

Way out: symmetry of A =⇒ no bad signs!
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back to the start

Recall our system of SPDEs

duα =
[
∂i (a

αβ
ij (u)∂ju

β) + ∂iΦ
α
i (u) + φα(u)

]
dt

+
∑
n≥1

[
bαβn,j (uβ)∂ju

β + gαn (u)
]
dwn,

uα(0) = uα0 .

Approximate problems: just regularize the coefficients!
Extrapolated variational regularity + stochastic compactness

a.s. un → u in C ([0,T ]; L2(D)) & ∇un ⇀ ∇u in Lp(0,T ; L2(D)).

Latter fact in general not useful, but:

∇un bounded in Lp(Ω× (0,T ); L2(D)) =⇒ Vitali’s convergence
theorem applicable
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main results on quasilinear SPDEs

Consider system of SPDEs

duα =
[
∂i (a

αβ
ij (u)∂ju

β) + ∂iΦ
α
i (u) + φα(u)

]
dt

+
∑
n≥1

[
bαβn,j (uβ)∂ju

β + gαn (u)
]
dwn,

uα(0) = uα0 .

Theorem (B., Veraar)

Let Φ, φ Lipschitz, u0 ∈ Lp(Ω;B
1−2/p
2,p,0 (D)) =⇒ system admits solution.

Theorem (B., Veraar)

Assume system diagonal, Φ, φ of polynomial growth, φ “dissipative”

and u0 ∈ Lp(Ω;B
1−2/p
2,p,0 (D)) ∩ Lq(Ω× D) =⇒ system admits solution.
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Thank you for your attention!

A digital version of this presentation can be found here:
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http://sebastian-bechtel.info/delft2024.pdf
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