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What is the Kato square root problem?

I O ⊆ Rd open
I W 1,2

0 (O) ⊆ V ⊆W 1,2(O) closed subspace
I aij ,bi , cj ,d : O → Cm×m bounded and measurable
I define sesquilinear form on V × V

a(u, v) =

∫
O

d∑
i,j=1

aij∂ju · ∂iv +
d∑

i=1

biu · ∂iv +
d∑

j=1

cj∂ju · v + du · v dx

I form a coercive in Gårding’s sense

Re a(u,u) ≥ λ(‖u‖2L2(O) + ‖∇u‖2L2(O))

I L operator in L2(O) associated with a

Problem
For which spaces V do we have D(L

1
2 ) = V with equivalent norms?
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What is known for mixed boundary conditions?

Theorem (AKM ’06, EHT ’16)

Suppose:
I O bounded domain
I O is d-regular
I ∂O is (d − 1)-regular
I D ⊆ ∂O is (d − 1)-regular
I O is bi-Lipschitz near ∂O \ D

Then Kato’s square root property holds for V = W 1,2
D (O).

Aim: only demand for boundary regularity!
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First-order approach

Put Γ :=

 0 0 0
1 0 0
∇D 0 0

 , B :=

0 0 0
0 d c
0 b A

 , ΠB := Γ + Γ∗B.

=⇒ ΠB is bisectorial and Π2
B =

L 0 0
0 ∗ ∗
0 ∗ ∗

.

Assume ΠB has bounded H∞-calculus: Set |z| :=
√

z2 on bisector,
then |z|z ,

z
|z| ∈ H∞.

Hence

‖ΠBU‖ ≈ ‖
√

Π2
BU‖.

For U =
[
v 0 0

]T :

‖v‖W 1,2 ≈ ‖ΓU‖ = ‖ΠBU‖ ≈ ‖
√

Π2
BU‖ = ‖

√
Lv‖.
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The Axelsson–Keith–McIntosh framework

Provide: Sufficient conditions for square function estimate∫ ∞
0
‖tΠB(1 + t2Π2

B)−1U‖2 dt
t
≈ ‖U‖2 U ∈ R(ΠB).

McIntosh’s theorem:

square function estimate⇐⇒ bounded H∞-calculus.

Refinement by Egert–Haller-Dintelmann–Tolksdorf: square function
estimate in mixed BC context

EHT assumptions

framework geometric
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What is known for mixed boundary conditions?

Theorem (AKM ’06, EHT ’16)

Suppose:
I O bounded domain
I O is d-regular
I ∂O is (d − 1)-regular
I D ⊆ ∂O is (d − 1)-regular
I O is bi-Lipschitz near ∂O \ D

Then Kato’s square root property holds for V = W 1,2
D (O).

Aim: only demand for boundary regularity!
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Extension operator

Theorem (B.–Brown–Haller-Dintelmann–Tolksdorf ’21)

Let O open, D ⊆ ∂O closed. Put N = ∂O \ D.

Assume:
I x , y ∈ O with |x − y | < δ connectable by ε-cigar w.r.t. Rd \ N,
I ε-cigars satisfy “quasi-hyperbolic distance condition”,
I connected components near N have minimum size.

Then there exists extension operator which is semiuniversal for
W k ,p

D (O), 1 ≤ p <∞.

Strategy: non-trivial extension of Jones’ result (Acta ’81) using
“escaping chains” of cubes.

Kato: locally uniform near N =⇒ assumptions above.
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A wild geometry that is admissible

I Neumann boundary part N (black) is
fractal

I local quantitative connectivity (cyan
ε-cigar) holds near N (in gray
neighborhood around N)

I Dirichlet boundary part (orange) contains
a slice (so worse than Lipschitz)

I O contains outward cusp (not d-regular)
I diameter of connected components away

from N degenerates



A wild geometry that is admissible

I Neumann boundary part N (black) is
fractal

I local quantitative connectivity (cyan
ε-cigar) holds near N (in gray
neighborhood around N)

I Dirichlet boundary part (orange) contains
a slice (so worse than Lipschitz)

I O contains outward cusp (not d-regular)
I diameter of connected components away

from N degenerates



A wild geometry that is admissible

I Neumann boundary part N (black) is
fractal

I local quantitative connectivity (cyan
ε-cigar) holds near N (in gray
neighborhood around N)

I Dirichlet boundary part (orange) contains
a slice (so worse than Lipschitz)

I O contains outward cusp (not d-regular)
I diameter of connected components away

from N degenerates



A wild geometry that is admissible

I Neumann boundary part N (black) is
fractal

I local quantitative connectivity (cyan
ε-cigar) holds near N (in gray
neighborhood around N)

I Dirichlet boundary part (orange) contains
a slice (so worse than Lipschitz)

I O contains outward cusp (not d-regular)

I diameter of connected components away
from N degenerates



A wild geometry that is admissible

I Neumann boundary part N (black) is
fractal

I local quantitative connectivity (cyan
ε-cigar) holds near N (in gray
neighborhood around N)

I Dirichlet boundary part (orange) contains
a slice (so worse than Lipschitz)

I O contains outward cusp (not d-regular)
I diameter of connected components away

from N degenerates



What is known for mixed boundary conditions?

Theorem (AKM ’06, EHT ’16)

Suppose:
I O bounded���

�XXXXdomain
I O is d-regular
I ∂O is(((((

(((hhhhhhhh(d − 1)-regular porous
I D ⊆ ∂O is (d − 1)-regular
I O is(((((

(hhhhhhbi-Lipschitz locally uniform near ∂O \ D

Then Kato’s square root property holds for V = W 1,2
D (O).

Aim: only demand for boundary regularity!

“domain”

boundary



What is known for mixed boundary conditions?

Theorem (AKM ’06, EHT ’16)

Suppose:
I O bounded���

�XXXXdomain
I O is d-regular
I ∂O is(((((

(((hhhhhhhh(d − 1)-regular porous
I D ⊆ ∂O is (d − 1)-regular
I O is(((((

(hhhhhhbi-Lipschitz locally uniform near ∂O \ D

Then Kato’s square root property holds for V = W 1,2
D (O).

Aim: only demand for boundary regularity!

“domain”

boundary



A glimpse on assumption (H7)

Put Π = Γ + Γ∗. Whole space: Π accretive on its range:

‖ΠU‖2 & ‖U‖W 1,2

To check: Let

U ∈ R(Γ) =⇒ U =

 0
v
∇Dv

 = ΠV for V =

v
0
0

 .

Calculate:

‖U‖
[L2,W 1,2

D (O)]γ

!
≈ ‖U‖Wγ,2(O) . ‖v‖W 1+γ,2

D (O)

!
≈ ‖(−∆D + 1)1/2+γ/2v‖

≈ ‖(−∆D + 1)γ/2ΠV‖ = ‖(Π2)γ/2U‖.
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Real interpolation of Sobolev spaces

Theorem (B.–Egert JFAA ’19)

I O open & d-regular with porous boundary,
I D ⊆ ∂O uniformly (d − 1)-regular,
I p ∈ (1,∞) and s ∈ (0,1) \ {1/p}.

Then one has

(Lp(O),W 1,p
D (O))s,p =

{
W s,p

D (O) (if s > 1/p)

W s,p(O) (if s < 1/p)
.

Strategy:
I Based on Grisvard’s trace method.
I Use fractional Hardy’s inequality (Dyda–Vähäkangas) on auxiliary

sets uniformly (d − 1)-regular.
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Optimal elliptic regularity using extrapolation

Want to show: D((1−∆D)1/2+γ/2) = W 1+γ,2
D (O).

Decompose:

(1−∆D)−1/2−γ/2 = (1−∆D)−1(1−∆D)1/2−γ/2.

I ∂O porous + Netrusov’s theorem:
boundedness

I Lax-Milgram lemma
I S̆neı̆berg + interpolation:

isomorphisms
I Kato (self-adjoint)
I fractional power domains
I duality + self-adjoint

1−∆D
(1−∆D)−1

(1−∆D)
1
2(1−∆D)
1−γ

2

(1−∆D)
1−γ

2(1−∆D)
1−γ

2

(1−∆D)−1

1 + γ11− γ

0

−1 + γ−1

s
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What is known for mixed boundary conditions?

Theorem (AKM ’06, EHT ’16)

Suppose:
I O(((((hhhhhbounded���

�XXXXdomain
I O is d-regular
I ∂O is(((((

(((hhhhhhhh(d − 1)-regular porous
I D ⊆ ∂O is uniformly (d − 1)-regular
I O is(((((

(hhhhhhbi-Lipschitz locally uniform near ∂O \ D

Then Kato’s square root property holds for V = W 1,2
D (O).

Aim: only demand for boundary regularity!

“domain”

boundary
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Decomposition of elliptic system

Write O =
⋃

i Oi .

Assume that

L2(O) ∼=
⊗

i

L2(Oi) and W 1,2
D (O) ∼=

⊗
i

W 1,2
D∩∂Oi

(Oi).

Transference principle:

D(
√

L) = W 1,2
D (O) ⇐⇒ D(

√
Li) = W 1,2

D∩∂Oi
(Oi) uniformly in i .

Upshot: Kato on interior thick O gives Kato on (possibly thin) Oi .
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Construction of extended system

Construction of O:

I Start with O.
I Fix grid of cubes (size adapted to Neumann tube).
I Add cubes away from N and hitting O.

Then: O of same geometric quality as O + d-regular X

Construction of L:

Put L on O and 1−∆ otherwise X
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��
��XXXXWhat This is known for mixed boundary conditions��SS? !

Theorem (AKM ’06, EHT ’16, B.–Egert–Haller-Dintelmann Adv. Math. ’20)

Suppose:
I O(((((hhhhhbounded���

�XXXXdomain
I O is���

��XXXXXd-regular
I ∂O is(((((

(((hhhhhhhh(d − 1)-regular����XXXXporous
I D ⊆ ∂O is uniformly (d − 1)-regular
I O is(((((

(hhhhhhbi-Lipschitz locally uniform near ∂O \ D

Then Kato’s square root property holds for V = W 1,2
D (O).

Aim: only demand for boundary regularity!
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boundary



Lp-bounds for the square root

Question: L
1
2 extrapolates to W 1,p

D (O)→ Lp(O) isomorphism for which
p > 2?

I q+(L) > 2 critical number for
√

t∇e−tL, then p ∈ (2,q+(L))

I extrapolation based on good-λ argument
I uses conservation property only pure Neumann BC
I uses local Poincaré inequalities on all scales desire: local &

homogeneous estimates for extension operator work on
(ε,∞)-domains, in particular unbounded
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Thank you for your attention!


