On mixed boundary conditions, function spaces, and Kato's square root property

Sebastian Bechtel

Darmstadt, 24 June 2021

Interpolation theory real \& complex

Kato square root problem

Extension operators $W_{D}^{s, p}(O) \& W_{D}^{\kappa, p}(O)$

Beyond CZ
$p>2 \& p<2$

Interpolation theory real \& complex

Kato square root problem

Extension operators $W_{D}^{s, p}(O) \& W_{D}^{k, p}(O)$

Beyond CZ
$p>2 \& p<2$

Interpolation theory real \& complex

Kato square root problem

Extension operators
$W_{D}^{s, p}(O) \& W_{D}^{\kappa, p}(O)$

Beyond CZ
$p>2 \& p<2$

Interpolation theory real \& complex

Kato square root problem

Interpolation theory real \& complex

Extension operators
$W_{D}^{s, p}(O) \& W_{D}^{\kappa, p}(O)$

Kato square root problem

Beyond CZ
$p>2 \& p<2$

What is the Kato square root problem?

What is the Kato square root problem?

- $O \subseteq \mathbb{R}^{d}$ open
- $W_{0}^{1,2}(O) \subseteq \mathcal{V} \subseteq W^{1,2}(O)$ closed subspace

What is the Kato square root problem?

- $O \subseteq \mathbb{R}^{d}$ open
- $W_{0}^{1,2}(O) \subseteq \mathcal{V} \subseteq W^{1,2}(O)$ closed subspace
- $a_{i j}, b_{i}, c_{j}, d: O \rightarrow \mathbb{C}^{m \times m}$ bounded and measurable
- define sesquilinear form on $\mathcal{V} \times \mathcal{V}$

$$
a(u, v)=\int_{O} \sum_{i, j=1}^{d} a_{i j} \partial_{j} u \cdot \overline{\partial_{i} v}+\sum_{i=1}^{d} b_{i} u \cdot \overline{\partial_{i} v}+\sum_{j=1}^{d} c_{j} \partial_{j} u \cdot \bar{v}+d u \cdot \bar{v} d x
$$

- form a coercive in Gårding's sense

$$
\operatorname{Re} a(u, u) \geq \lambda\left(\|u\|_{\mathrm{L}^{2}(O)}^{2}+\|\nabla u\|_{\mathrm{L}^{2}(O)}^{2}\right)
$$

What is the Kato square root problem?

- $O \subseteq \mathbb{R}^{d}$ open
- $W_{0}^{1,2}(O) \subseteq \mathcal{V} \subseteq W^{1,2}(O)$ closed subspace
- $a_{i j}, b_{i}, c_{j}, d: O \rightarrow \mathbb{C}^{m \times m}$ bounded and measurable
- define sesquilinear form on $\mathcal{V} \times \mathcal{V}$

$$
a(u, v)=\int_{O} \sum_{i, j=1}^{d} a_{i j} \partial_{j} u \cdot \overline{\partial_{i} v}+\sum_{i=1}^{d} b_{i} u \cdot \overline{\partial_{i} v}+\sum_{j=1}^{d} c_{j} \partial_{j} u \cdot \bar{v}+d u \cdot \bar{v} d x
$$

- form a coercive in Gårding's sense

$$
\operatorname{Re} a(u, u) \geq \lambda\left(\|u\|_{L^{2}(O)}^{2}+\|\nabla u\|_{L^{2}(O)}^{2}\right)
$$

- Loperator in $\mathrm{L}^{2}(O)$ associated with a

What is the Kato square root problem?

- $O \subseteq \mathbb{R}^{d}$ open
- $W_{0}^{1,2}(O) \subseteq \mathcal{V} \subseteq W^{1,2}(O)$ closed subspace
- $a_{i j}, b_{i}, c_{j}, d: O \rightarrow \mathbb{C}^{m \times m}$ bounded and measurable
- define sesquilinear form on $\mathcal{V} \times \mathcal{V}$

$$
a(u, v)=\int_{O} \sum_{i, j=1}^{d} a_{i j} \partial_{j} u \cdot \overline{\partial_{i} v}+\sum_{i=1}^{d} b_{i} u \cdot \overline{\partial_{i} v}+\sum_{j=1}^{d} c_{j} \partial_{j} u \cdot \bar{v}+d u \cdot \bar{v} d x
$$

- form a coercive in Gårding's sense

$$
\operatorname{Re} a(u, u) \geq \lambda\left(\|u\|_{\mathrm{L}^{2}(O)}^{2}+\|\nabla u\|_{\mathrm{L}^{2}(O)}^{2}\right)
$$

- Loperator in $\mathrm{L}^{2}(O)$ associated with a

Problem

For which spaces \mathcal{V} do we have $D\left(L^{\frac{1}{2}}\right)=\mathcal{V}$ with equivalent norms?

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)

Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d-1)$-regular
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-Lipschitz near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)

Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d-1)$-regular
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-Lipschitz near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)

Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d-1)$-regular
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-Lipschitz near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d-1)$-regular
- $D \subseteq \partial O$ is $(d-1)$-regular
"domain"
boundary
- O is bi-Lipschitz near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.
Aim: only demand for boundary regularity!

First-order approach
Put $\Gamma:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ \nabla_{D} & 0 & 0\end{array}\right], \quad B:=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & d & c \\ 0 & b & A\end{array}\right], \quad \Pi_{B}:=\Gamma+\Gamma^{*} B$.

First-order approach
Put $\quad \Gamma:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ \nabla_{D} & 0 & 0\end{array}\right], \quad B:=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & d & c \\ 0 & b & A\end{array}\right], \quad \Pi_{B}:=\Gamma+\Gamma^{*} B$.
$\Longrightarrow \quad \Pi_{B}$ is bisectorial and $\Pi_{B}^{2}=\left[\begin{array}{lll}L & 0 & 0 \\ 0 & * & * \\ 0 & * & *\end{array}\right]$.

First-order approach
Put $\Gamma:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ \nabla_{D} & 0 & 0\end{array}\right], \quad B:=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & d & c \\ 0 & b & A\end{array}\right], \quad \Pi_{B}:=\Gamma+\Gamma^{*} B$.
$\Longrightarrow \quad \Pi_{B}$ is bisectorial and $\Pi_{B}^{2}=\left[\begin{array}{ccc}L & 0 & 0 \\ 0 & * & * \\ 0 & * & *\end{array}\right]$.
Assume Π_{B} has bounded H^{∞}-calculus: Set $|z|:=\sqrt{z^{2}}$ on bisector, then $\frac{|z|}{z}, \frac{z}{|z|} \in H^{\infty}$.

First-order approach
Put $\Gamma:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ \nabla_{D} & 0 & 0\end{array}\right], \quad B:=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & d & c \\ 0 & b & A\end{array}\right], \quad \Pi_{B}:=\Gamma+\Gamma^{*} B$.
$\Longrightarrow \quad \Pi_{B}$ is bisectorial and $\Pi_{B}^{2}=\left[\begin{array}{ccc}L & 0 & 0 \\ 0 & * & * \\ 0 & * & *\end{array}\right]$.
Assume Π_{B} has bounded H^{∞}-calculus: Set $|z|:=\sqrt{z^{2}}$ on bisector, then $\frac{|z|}{z}, \frac{z}{|z|} \in H^{\infty}$. Hence

$$
\left\|\Pi_{B} U\right\| \approx\left\|\sqrt{\Pi_{B}^{2}} U\right\|
$$

First-order approach
Put $\Gamma:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ \nabla_{D} & 0 & 0\end{array}\right], \quad B:=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & d & c \\ 0 & b & A\end{array}\right], \quad \Pi_{B}:=\Gamma+\Gamma^{*} B$.
$\Longrightarrow \quad \Pi_{B}$ is bisectorial and $\Pi_{B}^{2}=\left[\begin{array}{ccc}L & 0 & 0 \\ 0 & * & * \\ 0 & * & *\end{array}\right]$.
Assume Π_{B} has bounded H^{∞}-calculus: Set $|z|:=\sqrt{z^{2}}$ on bisector, then $\frac{|z|}{z}, \frac{z}{|z|} \in H^{\infty}$. Hence

$$
\left\|\Pi_{B} U\right\| \approx\left\|\sqrt{\Pi_{B}^{2}} U\right\|
$$

For $U=\left[\begin{array}{lll}v & 0 & 0\end{array}\right]^{T}:$

$$
\|v\|_{W^{1,2}} \approx\|\Gamma U\|=\left\|\Pi_{B} U\right\| \approx\left\|\sqrt{\Pi_{B}^{2}} U\right\|=\|\sqrt{L} v\| .
$$

The Axelsson-Keith-McIntosh framework

Provide: Sufficient conditions for square function estimate

$$
\int_{0}^{\infty}\left\|t \Pi_{B}\left(1+t^{2} \Pi_{B}^{2}\right)^{-1} U\right\|^{2} \frac{d t}{t} \approx\|U\|^{2} \quad U \in R\left(\Pi_{B}\right) .
$$

The Axelsson-Keith-McIntosh framework

Provide: Sufficient conditions for square function estimate

$$
\int_{0}^{\infty}\left\|t \Pi_{B}\left(1+t^{2} \Pi_{B}^{2}\right)^{-1} U\right\|^{2} \frac{d t}{t} \approx\|U\|^{2} \quad U \in R\left(\Pi_{B}\right) .
$$

McIntosh's theorem:
square function estimate \Longleftrightarrow bounded H^{∞}-calculus.

The Axelsson-Keith-McIntosh framework

Provide: Sufficient conditions for square function estimate

$$
\int_{0}^{\infty}\left\|t \Pi_{B}\left(1+t^{2} \Pi_{B}^{2}\right)^{-1} U\right\|^{2} \frac{d t}{t} \approx\|U\|^{2} \quad U \in R\left(\Pi_{B}\right) .
$$

McIntosh's theorem:
square function estimate \Longleftrightarrow bounded H^{∞}-calculus.
Refinement by Egert-Haller-Dintelmann-Tolksdorf: square function estimate in mixed BC context

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d-1)$-regular
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-Lipschitz near $\partial O \backslash D$
"domain"

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(a \rightarrow$ gular porous
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-Lipschitz near $\partial O \backslash D$
"domain"
boundary

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d=1)$ gular porous
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-Lipschitz near $\partial O \backslash D$
"domain"
boundary

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

Extension operator

Theorem (B.-Brown-Haller-Dintelmann-Tolksdorf '21)
Let O open, $D \subseteq \partial O$ closed. Put $N=\partial O \backslash D$.

Extension operator

Theorem (B.-Brown-Haller-Dintelmann-Tolksdorf '21)

Let O open, $D \subseteq \partial O$ closed. Put $N=\partial O \backslash D$. Assume:

- $x, y \in O$ with $|x-y|<\delta$ connectable by ε-cigar w.r.t. $\mathbb{R}^{d} \backslash \bar{N}$,

Extension operator

Theorem (B.-Brown-Haller-Dintelmann-Tolksdorf '21)

Let O open, $D \subseteq \partial O$ closed. Put $N=\partial O \backslash D$. Assume:

- $x, y \in O$ with $|x-y|<\delta$ connectable by ε-cigar w.r.t. $\mathbb{R}^{d} \backslash \bar{N}$,
- ε-cigars satisfy "quasi-hyperbolic distance condition",

Extension operator

Theorem (B.-Brown-Haller-Dintelmann-Tolksdorf '21)

Let O open, $D \subseteq \partial O$ closed. Put $N=\partial O \backslash D$. Assume:

- $x, y \in O$ with $|x-y|<\delta$ connectable by ε-cigar w.r.t. $\mathbb{R}^{d} \backslash \bar{N}$,
- ε-cigars satisfy "quasi-hyperbolic distance condition",
- connected components near N have minimum size.

Extension operator

Theorem (B.-Brown-Haller-Dintelmann-Tolksdorf '21)

Let O open, $D \subseteq \partial O$ closed. Put $N=\partial O \backslash D$. Assume:

- $x, y \in O$ with $|x-y|<\delta$ connectable by ε-cigar w.r.t. $\mathbb{R}^{d} \backslash \bar{N}$,
- ε-cigars satisfy "quasi-hyperbolic distance condition",
- connected components near N have minimum size.

Then there exists extension operator which is semiuniversal for $W_{D}^{k, p}(O), 1 \leq p<\infty$.

Strategy: non-trivial extension of Jones' result (Acta '81) using "escaping chains" of cubes.

Extension operator

Theorem (B.-Brown-Haller-Dintelmann-Tolksdorf '21)

Let O open, $D \subseteq \partial O$ closed. Put $N=\partial O \backslash D$. Assume:

- $x, y \in O$ with $|x-y|<\delta$ connectable by ε-cigar w.r.t. $\mathbb{R}^{d} \backslash \bar{N}$,
- ε-cigars satisfy "quasi-hyperbolic distance condition",
- connected components near N have minimum size.

Then there exists extension operator which is semiuniversal for $W_{D}^{k, p}(O), 1 \leq p<\infty$.

Strategy: non-trivial extension of Jones' result (Acta '81) using "escaping chains" of cubes.

Kato: locally uniform near N

Extension operator

Theorem (B.-Brown-Haller-Dintelmann-Tolksdorf '21)

Let O open, $D \subseteq \partial O$ closed. Put $N=\partial O \backslash D$. Assume:

- $x, y \in O$ with $|x-y|<\delta$ connectable by ε-cigar w.r.t. $\mathbb{R}^{d} \backslash \bar{N}$,
- ε-cigars satisfy "quasi-hyperbolic distance condition",
- connected components near N have minimum size.

Then there exists extension operator which is semiuniversal for $W_{D}^{k, p}(O), 1 \leq p<\infty$.

Strategy: non-trivial extension of Jones' result (Acta '81) using "escaping chains" of cubes.

Kato: locally uniform near $N \Longrightarrow$ assumptions above.

A wild geometry that is admissible

- Neumann boundary part N (black) is fractal

A wild geometry that is admissible

- Neumann boundary part N (black) is fractal
- local quantitative connectivity (cyan ε-cigar) holds near N (in gray neighborhood around N)

A wild geometry that is admissible

- Neumann boundary part N (black) is fractal
- local quantitative connectivity (cyan ε-cigar) holds near N (in gray neighborhood around N)
- Dirichlet boundary part (orange) contains a slice (so worse than Lipschitz)

A wild geometry that is admissible

- Neumann boundary part N (black) is fractal
- local quantitative connectivity (cyan ε-cigar) holds near N (in gray neighborhood around N)
- Dirichlet boundary part (orange) contains a slice (so worse than Lipschitz)
- O contains outward cusp (not d-regular)

A wild geometry that is admissible

- Neumann boundary part N (black) is fractal
- local quantitative connectivity (cyan ε-cigar) holds near N (in gray neighborhood around N)
- Dirichlet boundary part (orange) contains a slice (so worse than Lipschitz)
- O contains outward cusp (not d-regular)
- diameter of connected components away from N degenerates

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d=1)$ gular porous
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-thitz locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- O bounded domain
- O is d-regular
- ∂O is $(d=1)$ gular porous
- $D \subseteq \partial O$ is $(d-1)$-regular
- O is bi-tipenitz locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range:

$$
\|\Pi U\|_{2} \gtrsim\|U\|_{W^{1,2}}
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{1 / 2} U\right\|_{2} \approx\|\Pi U\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1}, 2\right]_{1}}
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1,2}\right]_{\gamma}}
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1}, 2\right]_{\gamma}} \quad U \in R(\Gamma) \cap D\left(\Pi^{2}\right) .
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1}, 2\right]_{\gamma}} \quad U \in R(\Gamma) \cap D\left(\Pi^{2}\right) .
$$

To check: Let

$$
U \in R(\Gamma) \Longrightarrow U=\left[\begin{array}{c}
0 \\
v \\
\nabla_{D} V
\end{array}\right]=\Pi V \text { for } \quad V=\left[\begin{array}{l}
v \\
0 \\
0
\end{array}\right] .
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1}, 2\right]_{\gamma}} \quad U \in R(\Gamma) \cap D\left(\Pi^{2}\right) .
$$

To check: Let

$$
U \in R(\Gamma) \Longrightarrow U=\left[\begin{array}{c}
0 \\
v \\
\nabla_{D} V
\end{array}\right]=\Pi V \text { for } \quad V=\left[\begin{array}{l}
v \\
0 \\
0
\end{array}\right] .
$$

Calculate:

$$
\|U\|_{\left[L^{2}, W_{D}^{1,2}(O)\right]_{\gamma}}
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1,2}\right]_{\gamma}} \quad U \in R(\Gamma) \cap D\left(\Pi^{2}\right)
$$

To check: Let

$$
U \in R(\Gamma) \Longrightarrow U=\left[\begin{array}{c}
0 \\
v \\
\nabla_{D} v
\end{array}\right]=\Pi V \text { for } \quad V=\left[\begin{array}{l}
v \\
0 \\
0
\end{array}\right]
$$

Calculate:

$$
\|U\|_{\left[L^{2}, W_{D}^{1,2}(O)\right]_{\gamma}} \stackrel{!}{\sim}\|U\|_{W^{\gamma, 2}(O)} \lesssim\|v\|_{W_{D}^{1+\gamma, 2}(O)}
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1,2}\right]_{\gamma}} \quad U \in R(\Gamma) \cap D\left(\Pi^{2}\right)
$$

To check: Let

$$
U \in R(\Gamma) \Longrightarrow U=\left[\begin{array}{c}
0 \\
v \\
\nabla_{D} V
\end{array}\right]=\Pi V \text { for } \quad V=\left[\begin{array}{l}
v \\
0 \\
0
\end{array}\right]
$$

Calculate:

$$
\|U\|_{\left[L^{2}, W_{D}^{1,2}(O)\right]_{\gamma}} \stackrel{!}{\approx}\|U\|_{W^{\gamma, 2}(O)} \lesssim\|v\|_{W_{D}^{1+\gamma, 2}(O)} \stackrel{!}{\approx}\left\|\left(-\Delta_{D}+1\right)^{1 / 2+\gamma / 2} v\right\|
$$

A glimpse on assumption (H7)

Put $\Pi=\Gamma+\Gamma^{*}$. Whole space: Π accretive on its range. Modify to:

$$
\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\|_{2} \gtrsim\|U\|_{\left[L^{2}, W^{1,2}\right]_{\gamma}} \quad U \in R(\Gamma) \cap D\left(\Pi^{2}\right)
$$

To check: Let

$$
U \in R(\Gamma) \Longrightarrow U=\left[\begin{array}{c}
0 \\
v \\
\nabla_{D} V
\end{array}\right]=\Pi V \text { for } \quad V=\left[\begin{array}{l}
v \\
0 \\
0
\end{array}\right]
$$

Calculate:

$$
\begin{aligned}
\|U\|_{\left[L^{2}, W_{D}^{1,2}(O)\right]_{\gamma}} & \stackrel{!}{\approx}\|U\|_{W^{\gamma, 2}(O)} \lesssim\|v\|_{W_{D}^{1+\gamma, 2}(O)} \stackrel{\stackrel{\vdots}{\approx}\left\|\left(-\Delta_{D}+1\right)^{1 / 2+\gamma / 2} v\right\|}{ } \\
& \approx\left\|\left(-\Delta_{D}+1\right)^{\gamma / 2} \Pi V\right\|=\left\|\left(\Pi^{2}\right)^{\gamma / 2} U\right\| .
\end{aligned}
$$

Real interpolation of Sobolev spaces

Theorem (B.-Egert JFAA '19)

- O open \& d-regular with porous boundary,
- $D \subseteq \partial O$ uniformly $(d-1)$-regular,
- $p \in(1, \infty)$ and $s \in(0,1) \backslash\{1 / p\}$.

Then one has

$$
\left(L^{p}(O), W_{D}^{1, p}(O)\right)_{s, p}=\left\{\begin{array}{ll}
W_{D}^{s, p}(O) & \text { (if } s>1 / p) \\
W^{s, p}(O) & \text { (if } s<1 / p)
\end{array}\right. \text {. }
$$

Real interpolation of Sobolev spaces

Theorem (B.-Egert JFAA '19)

- O open \& d-regular with porous boundary,
- $D \subseteq \partial O$ uniformly $(d-1)$-regular,
- $p \in(1, \infty)$ and $s \in(0,1) \backslash\{1 / p\}$.

Then one has

$$
\left(L^{p}(O), W_{D}^{1, p}(O)\right)_{s, p}=\left\{\begin{array}{ll}
W_{D}^{s, p}(O) & \text { (if } s>1 / p) \\
W^{s, p}(O) & \text { (if } s<1 / p)
\end{array}\right. \text {. }
$$

Strategy:

- Based on Grisvard's trace method.

Real interpolation of Sobolev spaces

Theorem (B.-Egert JFAA '19)

- O open \& d-regular with porous boundary,
- $D \subseteq \partial O$ uniformly $(d-1)$-regular,
- $p \in(1, \infty)$ and $s \in(0,1) \backslash\{1 / p\}$.

Then one has

$$
\left(L^{p}(O), W_{D}^{1, p}(O)\right)_{s, p}= \begin{cases}W_{D}^{s, p}(O) & \text { (if } s>1 / p) \\ W^{s, p}(O) & \text { (if } s<1 / p)\end{cases}
$$

Strategy:

- Based on Grisvard's trace method.
- Use fractional Hardy's inequality (Dyda-Vähäkangas) on auxiliary sets \rightsquigarrow uniformly ($d-1$)-regular.

Impressions from Orsay 2018

Impressions from Orsay 2018

week 1

Impressions from Orsay 2018

week 1
week 2

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$.

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

- ∂O porous + Netrusov's theorem: boundedness

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

- ∂O porous + Netrusov's theorem: boundedness
- Lax-Milgram lemma

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

- ∂O porous + Netrusov's theorem: boundedness
- Lax-Milgram lemma
- Šneĭberg + interpolation: isomorphisms

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

- ∂O porous + Netrusov's theorem: boundedness
- Lax-Milgram lemma
- S̆neĭberg + interpolation: isomorphisms

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2}
$$

- ∂O porous + Netrusov's theorem: boundedness
- Lax-Milgram lemma
- Šneĭberg + interpolation: isomorphisms
- Kato (self-adjoint)

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

- ∂O porous + Netrusov's theorem: boundedness
- Lax-Milgram lemma
- Šneĭberg + interpolation: isomorphisms
- Kato (self-adjoint)
- fractional power domains

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

- ∂O porous + Netrusov's theorem: boundedness
- Lax-Milgram lemma
- Šneĭberg + interpolation: isomorphisms
- Kato (self-adjoint)
- fractional power domains
- duality + self-adjoint

Optimal elliptic regularity using extrapolation

Want to show: $D\left(\left(1-\Delta_{D}\right)^{1 / 2+\gamma / 2}\right)=W_{D}^{1+\gamma, 2}(O)$. Decompose:

$$
\left(1-\Delta_{D}\right)^{-1 / 2-\gamma / 2}=\left(1-\Delta_{D}\right)^{-1}\left(1-\Delta_{D}\right)^{1 / 2-\gamma / 2} .
$$

- ∂O porous + Netrusov's theorem: boundedness
- Lax-Milgram lemma
- Šneĭberg + interpolation: isomorphisms
- Kato (self-adjoint)
- fractional power domains
- duality + self-adjoint

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- Obounddomain
- O is d-regular
- ∂O is (d 1) poriar poros
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
- O is bi-tin locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- Obounddomain
- O is d-regular
- ∂O is ($a-1$) gular poreus
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
- O is bi-tion locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- Oboundadain
- O is d-regular
- ∂O is ($a \rightarrow 1$ regular porous
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
- O is bi-tipentitz locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

Decomposition of elliptic system

Write $\boldsymbol{O}=\bigcup_{i} O_{i}$.

Decomposition of elliptic system

Write $\boldsymbol{O}=\bigcup_{i} O_{i}$. Assume that

$$
L^{2}(\boldsymbol{O}) \cong \bigotimes_{i} L^{2}\left(O_{i}\right) \quad \text { and } \quad W_{\boldsymbol{D}}^{1,2}(\boldsymbol{O}) \cong \bigotimes_{i} W_{\boldsymbol{D} \cap \partial O_{i}}^{1,2}\left(O_{i}\right) .
$$

Decomposition of elliptic system

Write $\boldsymbol{O}=\bigcup_{i} O_{i}$. Assume that

$$
L^{2}(\mathbf{O}) \cong \bigotimes_{i} L^{2}\left(O_{i}\right) \quad \text { and } \quad W_{\boldsymbol{D}}^{1,2}(\mathbf{O}) \cong \bigotimes_{i} W_{\boldsymbol{D} \cap \partial O_{i}}^{1,2}\left(O_{i}\right) .
$$

Transference principle:

$$
D(\sqrt{\boldsymbol{L}})=W_{\boldsymbol{D}}^{1,2}(\boldsymbol{O}) \quad \Longleftrightarrow \quad D\left(\sqrt{L_{i}}\right)=W_{\boldsymbol{D} \cap \partial O_{i}}^{1,2}\left(O_{i}\right) \quad \text { uniformly in } i .
$$

Decomposition of elliptic system

Write $\boldsymbol{O}=\bigcup_{i} O_{i}$. Assume that

$$
L^{2}(\boldsymbol{O}) \cong \bigotimes_{i} L^{2}\left(O_{i}\right) \quad \text { and } \quad W_{\boldsymbol{D}}^{1,2}(\boldsymbol{O}) \cong \bigotimes_{i} W_{\boldsymbol{D} \cap \partial O_{i}}^{1,2}\left(O_{i}\right) .
$$

Transference principle:

$$
D(\sqrt{\boldsymbol{L}})=W_{\boldsymbol{D}}^{1,2}(\boldsymbol{O}) \quad \Longleftrightarrow \quad D\left(\sqrt{L_{i}}\right)=W_{\boldsymbol{D} \cap \partial O_{i}}^{1,2}\left(O_{i}\right) \quad \text { uniformly in } i .
$$

Upshot: Kato on interior thick \mathbf{O} gives Kato on (possibly thin) O_{i}.

Construction of extended system

Construction of \boldsymbol{O} :

Construction of extended system

Construction of \boldsymbol{O} :

- Start with O.

Construction of extended system

Construction of \boldsymbol{O} :

- Start with O.
- Fix grid of cubes (size adapted to Neumann tube).

Construction of extended system

Construction of \boldsymbol{O} :

- Start with O.
- Fix grid of cubes (size adapted to Neumann tube).
- Add cubes away from N and hitting O.

Construction of extended system

Construction of \boldsymbol{O} :

- Start with O.
- Fix grid of cubes (size adapted to Neumann tube).
- Add cubes away from N and hitting O.

Then: \boldsymbol{O} of same geometric quality as \mathbf{O}

Construction of extended system

Construction of \boldsymbol{O} :

- Start with O.
- Fix grid of cubes (size adapted to Neumann tube).
- Add cubes away from N and hitting O.

Then: \boldsymbol{O} of same geometric quality as $\mathbf{O}+\boldsymbol{d}$-regular \checkmark

Construction of extended system

Construction of \boldsymbol{O} :

- Start with O.
- Fix grid of cubes (size adapted to Neumann tube).
- Add cubes away from N and hitting O.

Then: \boldsymbol{O} of same geometric quality as $\mathbf{O}+\boldsymbol{d}$-regular \checkmark

Construction of \boldsymbol{L} :

Construction of extended system

Construction of \boldsymbol{O} :

- Start with O.
- Fix grid of cubes (size adapted to Neumann tube).
- Add cubes away from N and hitting O.

Then: \mathbf{O} of same geometric quality as $O+d$-regular \checkmark

Construction of \boldsymbol{L} :
Put L on O and $1-\Delta$ otherwise \checkmark

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- Obouncddomain
- O is d-regutar
- ∂O is ($d=1$ regular porous
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
- O is bi-tipentíz locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)
Suppose:

- Obouncddomain
- O is d-regutar
- ∂O is ($d=1$ regular porous
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
boundary
- O is bi-tin locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What is known for mixed boundary conditions?

Theorem (AKM '06, EHT '16)

Suppose:

- Obouncddomain
- O is d-regutar
- ∂O is ($d=1$ regular porous
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
- O is bi-tin locally uniform near $\partial O \backslash D$

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

What This is known for mixed boundary conditions.

Theorem (AKM '06, EHT '16, B.-Egert-Haller-Dintelmann Adv. Math. '20)
Suppose:

- Obouddomain
- O is d-regutar
- ∂O is ($a \rightarrow 1$ regular porous
- $D \subseteq \partial O$ is uniformly $(d-1)$-regular
- O is bi-thitz locally uniform near $\partial O \backslash D$
boundary

Then Kato's square root property holds for $\mathcal{V}=W_{D}^{1,2}(O)$.

Aim: only demand for boundary regularity!

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$, then $p \in\left(2, q^{+}(L)\right)$

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$, then $p \in\left(2, q^{+}(L)\right)$
- extrapolation based on good- λ argument

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$, then $p \in\left(2, q^{+}(L)\right)$
- extrapolation based on good- λ argument
- uses conservation property

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$, then $p \in\left(2, q^{+}(L)\right)$
- extrapolation based on good- λ argument
- uses conservation property \rightsquigarrow only pure Neumann BC

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$, then $p \in\left(2, q^{+}(L)\right)$
- extrapolation based on good- λ argument
- uses conservation property \rightsquigarrow only pure Neumann BC
- uses local Poincaré inequalities on all scales

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$, then $p \in\left(2, q^{+}(L)\right)$
- extrapolation based on good- λ argument
- uses conservation property \rightsquigarrow only pure Neumann BC
- uses local Poincaré inequalities on all scales \rightsquigarrow desire: local \& homogeneous estimates for extension operator

L^{p}-bounds for the square root

Question: $L^{\frac{1}{2}}$ extrapolates to $W_{D}^{1, p}(O) \rightarrow L^{p}(O)$ isomorphism for which $p>2$?

- $q^{+}(L)>2$ critical number for $\sqrt{t} \nabla e^{-t L}$, then $p \in\left(2, q^{+}(L)\right)$
- extrapolation based on good- λ argument
- uses conservation property \rightsquigarrow only pure Neumann BC
- uses local Poincaré inequalities on all scales \rightsquigarrow desire: local \& homogeneous estimates for extension operator \rightsquigarrow work on (ε, ∞)-domains, in particular unbounded

Thank you for your attention!

