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a(u,v) = /o > ajoju-Ov+ )Y biu-0iv+ Y Goju-V+du-Vdx
jj=1 =1 j=1

» form a coercive in Garding’s sense
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» L operator in L?(O) associated with a

Problem
For which spaces V do we have D(L%) = V with equivalent norms?



What is known for mixed boundary conditions?

Theorem (AKM '06, EHT ’16)

Suppose:
» O bounded domain
» QO is d-regular
» 00 is (d — 1)-regular
» DC 00is (d— 1)-regular
» O is bi-Lipschitz near 00O \ D
Then Kato’s square root property holds for V = WB’Z(O).



What is known for mixed boundary conditions?

Theorem (AKM '06, EHT ’16)

Suppose:
» O bounded domain
» QO is d-regular
» 00 is (d — 1)-regular
» DC 90is (d— 1)-regular boundary
» O is bi-Lipschitz near 00O \ D

Then Kato’s square root property holds for V = WB’Z(O).

“domain”




What is known for mixed boundary conditions?

Theorem (AKM '06, EHT ’16)

Suppose:
» O bounded domain
» QO is d-regular
» 00 is (d — 1)-regular
» DC 90is (d— 1)-regular boundary
» O is bi-Lipschitz near 00O \ D

Then Kato’s square root property holds for V = WB’Z(O).

“domain”

Aim: only demand for boundary regularity!



What is known for mixed boundary conditions?

Theorem (AKM '06, EHT ’16)

/fa

“domain”

Suppose:
» O bounded domain
» QO is d-regular
» 00 is (d — 1)-regular
» DC 90is (d— 1)-regular boundary
» O is bi-Lipschitz near 00O \ D

Then Kato’s square root property holds for V = WB’Z(O).

Aim: only demand for boundary regularity!



First-order approach

0 0 O] 0O 0O
Put T=|1 0 0|, B=1|0 d c|, MNg=Ir+TI*B.
Vp 0 0 0 b A




First-order approach

0 0 O] O 0 O
Put T=|1 0 0|, B=1|0 d c|, MNg=Ir+TI*B.
Vo 0 0 0 b A
L 0 O]
— [lgisbisectorial and M2 = [0 * =
0 * x|




First-order approach

0 0 O] O 0 O
Put T=|1 0 0|, B=1|0 d c|, MNg=Ir+TI*B.
Vp 0 O 0 b A
L 0 O]
— T[gis bisectorial and M= [0 x =x
0 * x|

Assume Mg has bounded H>-calculus: Set |z| := v/ z? on bisector,
then 2, 2 ¢ Heo

z |2



First-order approach

0 0 O] O 0 O
Put T=|1 0 0|, B=1|0 d c|, MNg=Ir+TI*B.
Vp 0 O 0 b A
L 0 O]
— T[gis bisectorial and M= [0 x =x
0 * x|

Assume IMg has bounded H>-calculus: Set |z| := v/ z? on bisector,

then 4, i3 € H>. Hence

INsU| ~ [I\/N3UI.



First-order approach
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Put T=|1 0 0|, B=1|0 d c|, MNg=Ir+TI*B.
Vp 0 O 0 b A
L 0 O]
— T[gis bisectorial and M= [0 x =x
0 * x|

Assume IMg has bounded H>-calculus: Set |z| := v/ z? on bisector,

then 4, i3 € H>. Hence

INgU|| =~ ||/ N3U.
.
ForU:[v 0 O] :

[Viiwre = [TU|l = IMgU|| = [|\/NZU = [|VLV||.
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Provide: Sufficient conditions for square function estimate

> at
| ima(t+ ) U~ U U e AN,

Mclntosh’s theorem:

square function estimate <= bounded H*°-calculus.

Refinement by Egert—Haller-Dintelmann—Tolksdorf: square function
estimate in mixed BC context

EHT assumptions

Y
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Let O open, D C 00 closed. Put N =00\ D. Assume:
> x,y € Owith |[x — y| < § connectable by e-cigar w.r.t. R \ N,
» c-cigars satisfy “quasi-hyperbolic distance condition”,
» connected components near N have minimum size.

Then there exists extension operator which is semiuniversal for
WSP(0),1 < p < .

Strategy: non-trivial extension of Jones’ result (Acta '81) using
“escaping chains” of cubes.

Kato: locally uniform near N — assumptions above.
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» Neumann boundary part N (black) is
fractal

» |ocal quantitative connectivity (cyan
e-cigar) holds near N (in gray
neighborhood around N)

» Dirichlet boundary part ( ) contains
a slice (so worse than Lipschitz)

» (O contains outward cusp (not d-regular)

» diameter of connected components away
from N degenerates

Y (OO0 oe-
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A glimpse on assumption (H7)

Put 1 =T +I'*. Whole space: 1 accretive on its range. Modify to:
|(M2)2U)2 2 Uz wiz, U € R(M) N D(N?).

To check: Let

0 %
UeR(INN = U= v | =NV for V=10
_VDV_ _O_
Calculate:
! !
10Ul wi 2oy, = 1Ulwo2(0) S IVIwssaz o) = (=00 +1)17272y)

~|[(=ap+ 1720V = [(M2)/2U).
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Real interpolation of Sobolev spaces

Theorem (B.—Egert JFAA '19)

» O open & d-regular with porous boundary,
» D C 00 uniformly (d — 1)-regular,

> pe(1,00)ands € (0,1)\ {1/p}.
Then one has

W5P(0) (if s> 1/p)

(LP(O), Wg)’p(O))s,p = {WS’P(O) (ifs<1/p)

Strategy:
» Based on Grisvard’s trace method.

» Use fractional Hardy’s inequality (Dyda—Vahakangas) on auxiliary
sets ~» uniformly (d — 1)-regular.
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Want to show: D((1 — Ap)'/2+1/2) = WL?(0). Decompose:
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Decomposition of elliptic system

Write O = [ J; O;. Assume that

200)= X L2(0) and Wp*( (g) W50, (0)).
I

Transference principle:

D(VL) = Wp®(0) <<= D(V/Lj)=Wp2,,(0;) uniformlyin .

Upshot: Kato on interior thick O gives Kato on (possibly thin) O;.
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Construction of O:

» Start with O.
» Fix grid of cubes (size adapted to Neumann tube).
» Add cubes away from N and hitting O.

Then: O of same geometric quality as O + d-regular v/

Construction of L:
Put Lon O and 1 — A otherwise v
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Wt This is known for mixed boundary conditionsX !

Theorem (AKM '06, EHT ’16, B.—Egert—Haller-Dintelmann Adv. Math. '20)

Suppose:

>
>
>
>
>

Then Kato’s square root property holds for V = WB’Z(O).

O bowunded domain

O'is dregutar

90 is (d=%+egUlar peseys

D C 00 is uniformly (d — 1)-regular

O is bietiesehitz locally uniform near 0O\ D

Aim: only demand for boundary regularity!

"domain’”

boundary
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LP-bounds for the square root

Question: Lz extrapolates to Wg’p(O) — LP(O) isomorphism for which
p > 27

» g (L) > 2 critical number for v/tVe~t, then p € (2,97 (L))

» extrapolation based on good-\ argument

» uses conservation property ~~ only pure Neumann BC

» uses local Poincaré inequalities on all scales ~ desire: local &
homogeneous estimates for extension operator ~» work on
(e, 00)-domains, in particular unbounded



Thank you for your attention!



