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Our problem for today

Consider

∂tu(t, x) − divxA(t, x)∇xu(t, x) = f (t, x), (t, x) ∈ (0,T ) ×Rd ,

u(0, x) = 0.

For which forcing terms f do we get maximal regularity?

Theorem (Lions)

f ∈ L2t (H−1
x ) Ô⇒ unique solution u with ∂tu ∈ L2t (H−1

x ).

What about L2t (L2x), Lpt (L
p
x), Lqt (L

p
x), weighted spaces, . . .
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Some positive and negative results

Sufficient for f ∈ L2t (L2x):

● C
1
2
+ε: Ouhabaz–Spina ’10

● H
1
2
+ε: Dier–Zacher ’17

● H
1
2 + Dini-condition: Achache–Ouhabaz ’19

● BMO
1
2 : Auscher–Egert ’16

● . . .

Time regularity of ≈ 1
2 in some sense sharp: counterexample Fackler ’17

with C
1
2

Beyond Hilbertian setting: f ∈ Lq(Lp), p ∈ (1,∞), q ≥ 2 OK with B
1
2
+ε

q,q :
Fackler ’18
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Acquistapace–Terreni approach

u weak solution of problem.

Fix t and put v(s) = e−(t−s)Ltu(s).

Formal derivative:

v ′(s) = Lte
−(t−s)Ltu(s) + e−(t−s)Ltu′(s)

= Lte
−(t−s)Ltu(s) + e−(t−s)Lt(f (s) − Lsu(s))

= e−(t−s)Lt(Lt − Ls)u(s) + Lte
−(t−s)Lt f (s).

Integrate:

∫
t

0
e−(t−s)Lt(Lt − Ls)u(s)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S1(u)(t)

+ ∫
t

0
e−(t−s)Lt f (s)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S2(f )(t)

= v(t) − v(0).

Representation formula: u(t) = S1(u)(t) + S2(f )(t).
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= e−(t−s)Lt(Lt − Ls)u(s) + Lte
−(t−s)Lt f (s).

Integrate:

∫
t

0
e−(t−s)Lt(Lt − Ls)u(s)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S1(u)(t)

+ ∫
t

0
e−(t−s)Lt f (s)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S2(f )(t)

= v(t) − v(0).

Representation formula: u(t) = S1(u)(t) + S2(f )(t).

5 / 13



Operator on f

Recall: S2(f )(t) = ∫ t
0 Lte

−(t−s)Lt f (s)ds.

On smooth data: Rewrite LtS2(f )(t) as pseudo-differential operator
with symbol

(τ, s)↦ Ls(2πiτ + Ls)−1.

Boundedness results (with minimal regularity in s):

● Haak–Ouhabaz: Hilbert spaces

● Portal–S̆trkalj: UMD spaces

● Hytönen–Portal: UMD spaces + multilinear

Actual bounds for symbol: good elliptic theory (later!)
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Operator S1

Recall: S1(u)(t) = ∫ t
0 e−(t−s)Lt(Lt − Ls)u(s)ds.

Investigate kernel of LtS1(u)(t). For simplicity: Hilbertian case.

A priori: u ∈ L2(H1) with ∥u∥ ≲ ∥f ∥2
↝ Need: H1 → L2 bound for Lte

−(t−s)Lt(Lt − Ls).

Expand: L∗t e
−(t−s)L∗t = (t − s)− 3

2 (L∗t )−
1
2 [(t − s)L∗t ]

3
2
e−(t−s)L

∗

t .

Duality + Kato + H∞-calculus Ô⇒ ∥Lte−(t−s)Lt∥H−1→L2 ≲ (t − s)− 3
2 .

If A ∈ C 1
2
+ε, then ∥Lt − Ls∥H1→H−1 ≲ (t − s) 1

2
+ε.

∥LtS1(u)(t)∥2 ≲ ∫
t

0
(t − s)−1+ε∥u(s)∥H1ds Ô⇒ Young
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Most important idea in this project!

Parameters: α space regularity, β time regularity (before: β = 1
2).

Assume a priori: u ∈ L2(H1+α) with ∥u∥ ≲ ∥f ∥2.

If A ∈ Cβ+ε(Cα+ε) (multiplier in space!), then

∥Lt − Ls∥H1+α→H−1+α ≲ (t − s)β+ε.

Need Lte
−(t−s)Lt ∶ H−1+α → L2. Modified expansion:

L∗t e
−(t−s)L∗t = (t − s)−

3−α
2 (L∗t )−

1−α
2 [(t − s)L∗t ]

3−α
2
e−(t−s)L

∗

t .

For convolution: −1
!= β + −3+α

2 iff. 2β + α = 1 (parabolic relation).
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How to get a priori improvement of solution?

Again u weak solution.

Apply Dα
x to equation:

∂t(Dα
x u) − divA∇(Dα

x u) = Dα
x f + div[Dα

x A −ADα
x ]∇u.

Consequently:

commutator [Dα
x ,A] bounded Ô⇒ Dα

x u weak solution

Ô⇒ higher regularity ,

But is it that easy??
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Most important idea in this project!

Serious technical difficulty: to many derivatives on u!

Idea: Smoothing of the coefficients, then take the limit.

L2(H−1)-situation

Lions: implicit constants
uniform in ellipticity ✓

Lq(H−1,p)-situation

Perturbation methods Ô⇒ weak
solutions, but not uniform in
coefficient functions /
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Dong–Kim framework

Theorem (Dong & Kim)

Coefficient A has vanishing oscillation

, f and F in weighted Lq(Lp)
space, then

∂tu − divA∇u + λu = f + divF

is well-posed for λ large enough. Constants are under control.

Moreover: elliptic problem is well-posed Ô⇒ resolvents for
−divxA(t, x)∇x jointly R-bounded over Lp

↝ pseudo differential operator bounded

Note: This uses the structure of the problem!
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Note: This uses the structure of the problem!
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Main result

Theorem (B. & F. Gabel)

Let p,q ∈ (1,∞)

, w ∈ Aq, α,β, ε > 0 with 2β + α = 1,

A ∈
⎧⎪⎪⎨⎪⎪⎩

Cβ+εt (Hα+ε, d
α

x ), if p < d
α ,

Cβ+εt (Cα+εx ), else.

Given f ∈ Lq(w ;Lp), there exists a unique solution to

∂tu(t, x) − divxA(t, x)∇xu(t, x) = f (t, x), (t, x) ∈ (0,T ) ×Rd ,

u(0, x) = 0,

with ∥Ltu(t)∥Lq(w ;Lp) ≲ ∥f ∥Lq(w ;Lp).
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Thanks for your attention!

A digital version of this presentation can be found here:
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https://sebastian-bechtel.info/darmstadt2022.pdf
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