weighted non-autonomous maximal $L^{q}\left(L^{p}\right)$-regularity

Sebastian Bechtel

(j.w. F. Gabel)

Delft University of Technology, The Netherlands

December 15, 2022

Where it all started. . .

Our problem for today

Consider

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0 .
\end{aligned}
$$

Our problem for today

Consider

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0 .
\end{aligned}
$$

For which forcing terms f do we get maximal regularity?

Our problem for today

Consider

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0 .
\end{aligned}
$$

For which forcing terms f do we get maximal regularity?

Theorem (Lions)
$f \in L_{t}^{2}\left(H_{x}^{-1}\right) \Longrightarrow$ unique solution u with $\partial_{t} u \in L_{t}^{2}\left(H_{x}^{-1}\right)$.

Our problem for today

Consider

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0 .
\end{aligned}
$$

For which forcing terms f do we get maximal regularity?

Theorem (Lions)
$f \in L_{t}^{2}\left(H_{x}^{-1}\right) \Longrightarrow$ unique solution u with $\partial_{t} u \in L_{t}^{2}\left(H_{x}^{-1}\right)$.
What about $L_{t}^{2}\left(L_{x}^{2}\right)$

Our problem for today

Consider

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0 .
\end{aligned}
$$

For which forcing terms f do we get maximal regularity?

Theorem (Lions)
$f \in L_{t}^{2}\left(H_{x}^{-1}\right) \Longrightarrow$ unique solution u with $\partial_{t} u \in L_{t}^{2}\left(H_{x}^{-1}\right)$.
What about $L_{t}^{2}\left(L_{x}^{2}\right), L_{t}^{p}\left(L_{x}^{p}\right)$

Our problem for today

Consider

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0 .
\end{aligned}
$$

For which forcing terms f do we get maximal regularity?

Theorem (Lions)
$f \in L_{t}^{2}\left(H_{x}^{-1}\right) \Longrightarrow$ unique solution u with $\partial_{t} u \in L_{t}^{2}\left(H_{x}^{-1}\right)$.
What about $L_{t}^{2}\left(L_{x}^{2}\right), L_{t}^{p}\left(L_{x}^{p}\right), L_{t}^{q}\left(L_{x}^{p}\right)$

Our problem for today

Consider

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0 .
\end{aligned}
$$

For which forcing terms f do we get maximal regularity?

Theorem (Lions)
$f \in L_{t}^{2}\left(H_{x}^{-1}\right) \Longrightarrow$ unique solution u with $\partial_{t} u \in L_{t}^{2}\left(H_{x}^{-1}\right)$.
What about $L_{t}^{2}\left(L_{x}^{2}\right), L_{t}^{p}\left(L_{x}^{p}\right), L_{t}^{q}\left(L_{x}^{p}\right)$, weighted spaces, \ldots

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17
- $H^{\frac{1}{2}}+$ Dini-condition: Achache-Ouhabaz '19

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17
- $H^{\frac{1}{2}}+$ Dini-condition: Achache-Ouhabaz '19
- $B M O^{\frac{1}{2}}$: Auscher-Egert '16

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17
- $H^{\frac{1}{2}}+$ Dini-condition: Achache-Ouhabaz '19
- $B M O^{\frac{1}{2}}$: Auscher-Egert '16

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17
- $H^{\frac{1}{2}}+$ Dini-condition: Achache-Ouhabaz '19
- $B M O^{\frac{1}{2}}$: Auscher-Egert '16

Time regularity of $\approx \frac{1}{2}$ in some sense sharp: counterexample Fackler '17 with $C^{\frac{1}{2}}$

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17
- $H^{\frac{1}{2}}+$ Dini-condition: Achache-Ouhabaz '19
- $B M O^{\frac{1}{2}}$: Auscher-Egert '16

Time regularity of $\approx \frac{1}{2}$ in some sense sharp: counterexample Fackler '17 with $C^{\frac{1}{2}}$
Beyond Hilbertian setting: $f \in L^{q}\left(L^{p}\right), p \in(1, \infty), q \geq 2$ OK with $B_{q, q}^{\frac{1}{2}+\varepsilon}$: Fackler '18

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10 \longleftarrow Acquistapace-Terreni
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17
- $H^{\frac{1}{2}}+$ Dini-condition: Achache-Ouhabaz '19 \longleftarrow
- $B M O^{\frac{1}{2}}$: Auscher-Egert '16

Time regularity of $\approx \frac{1}{2}$ in some sense sharp: counterexample Fackler '17 with $C^{\frac{1}{2}}$
Beyond Hilbertian setting: $f \in L^{q}\left(L^{p}\right), p \in(1, \infty), q \geq 2$ OK with $B_{q, q}^{\frac{1}{2}+\varepsilon}$: Fackler '18

Some positive and negative results

Sufficient for $f \in L_{t}^{2}\left(L_{x}^{2}\right)$:

- $C^{\frac{1}{2}+\varepsilon}$: Ouhabaz-Spina '10
- $H^{\frac{1}{2}+\varepsilon}$: Dier-Zacher '17 \longleftarrow commutator
- $H^{\frac{1}{2}}+$ Dini-condition: Achache-Ouhabaz '19
- $B M O^{\frac{1}{2}}$: Auscher-Egert '16

Time regularity of $\approx \frac{1}{2}$ in some sense sharp: counterexample Fackler '17 with $C^{\frac{1}{2}}$
Beyond Hilbertian setting: $f \in L^{q}\left(L^{p}\right), p \in(1, \infty), q \geq 2$ OK with $B_{q, q}^{\frac{1}{2}+\varepsilon}$: Fackler '18

Acquistapace-Terreni approach

u weak solution of problem.

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.
Formal derivative:

$$
v^{\prime}(s)
$$

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.
Formal derivative:

$$
v^{\prime}(s)=L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}} u^{\prime}(s)
$$

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.
Formal derivative:

$$
\begin{aligned}
v^{\prime}(s) & =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}} u^{\prime}(s) \\
& =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}}\left(f(s)-L_{s} u(s)\right)
\end{aligned}
$$

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.
Formal derivative:

$$
\begin{aligned}
v^{\prime}(s) & =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}} u^{\prime}(s) \\
& =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}}\left(f(s)-L_{s} u(s)\right) \\
& =e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s)+L_{t} e^{-(t-s) L_{t}} f(s)
\end{aligned}
$$

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.
Formal derivative:

$$
\begin{aligned}
v^{\prime}(s) & =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}} u^{\prime}(s) \\
& =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}}\left(f(s)-L_{s} u(s)\right) \\
& =e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s)+L_{t} e^{-(t-s) L_{t}} f(s)
\end{aligned}
$$

Integrate:

$$
\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s+\int_{0}^{t} e^{-(t-s) L_{t}} f(s) d s=v(t)-v(0)
$$

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.
Formal derivative:

$$
\begin{aligned}
v^{\prime}(s) & =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}} u^{\prime}(s) \\
& =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}}\left(f(s)-L_{s} u(s)\right) \\
& =e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s)+L_{t} e^{-(t-s) L_{t}} f(s) .
\end{aligned}
$$

Integrate:

$$
\underbrace{\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s}_{S_{1}(u)(t)}+\underbrace{\int_{0}^{t} e^{-(t-s) L_{t}} f(s) d s}_{S_{2}(f)(t)}=v(t)-v(0) .
$$

Acquistapace-Terreni approach

u weak solution of problem. Fix t and put $v(s)=e^{-(t-s) L_{t}} u(s)$.
Formal derivative:

$$
\begin{aligned}
v^{\prime}(s) & =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}} u^{\prime}(s) \\
& =L_{t} e^{-(t-s) L_{t}} u(s)+e^{-(t-s) L_{t}}\left(f(s)-L_{s} u(s)\right) \\
& =e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s)+L_{t} e^{-(t-s) L_{t}} f(s) .
\end{aligned}
$$

Integrate:

$$
\underbrace{\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s}_{S_{1}(u)(t)}+\underbrace{\int_{0}^{t} e^{-(t-s) L_{t}} f(s) d s}_{S_{2}(f)(t)}=v(t)-v(0) .
$$

Representation formula: $u(t)=S_{1}(u)(t)+S_{2}(f)(t)$.

Operator on f

Recall: $S_{2}(f)(t)=\int_{0}^{t} L_{t} e^{-(t-s) L_{t}} f(s) d s$.

Operator on f

Recall: $S_{2}(f)(t)=\int_{0}^{t} L_{t} e^{-(t-s) L_{t}} f(s) d s$.
On smooth data: Rewrite $L_{t} S_{2}(f)(t)$ as pseudo-differential operator with symbol

$$
(\tau, s) \mapsto L_{s}\left(2 \pi i \tau+L_{s}\right)^{-1}
$$

Operator on f

Recall: $S_{2}(f)(t)=\int_{0}^{t} L_{t} e^{-(t-s) L_{t}} f(s) d s$.
On smooth data: Rewrite $L_{t} S_{2}(f)(t)$ as pseudo-differential operator with symbol

$$
(\tau, s) \mapsto L_{s}\left(2 \pi i \tau+L_{s}\right)^{-1}
$$

Boundedness results (with minimal regularity in s):

- Haak-Ouhabaz: Hilbert spaces

Operator on f

Recall: $S_{2}(f)(t)=\int_{0}^{t} L_{t} e^{-(t-s) L_{t}} f(s) d s$.
On smooth data: Rewrite $L_{t} S_{2}(f)(t)$ as pseudo-differential operator with symbol

$$
(\tau, s) \mapsto L_{s}\left(2 \pi i \tau+L_{s}\right)^{-1}
$$

Boundedness results (with minimal regularity in s):

- Haak-Ouhabaz: Hilbert spaces
- Portal-Štrkalj: UMD spaces

Operator on f

Recall: $S_{2}(f)(t)=\int_{0}^{t} L_{t} e^{-(t-s) L_{t}} f(s) d s$.
On smooth data: Rewrite $L_{t} S_{2}(f)(t)$ as pseudo-differential operator with symbol

$$
(\tau, s) \mapsto L_{s}\left(2 \pi i \tau+L_{s}\right)^{-1}
$$

Boundedness results (with minimal regularity in s):

- Haak-Ouhabaz: Hilbert spaces
- Portal-Štrkalj: UMD spaces
- Hytönen-Portal: UMD spaces + multilinear

Operator on f

Recall: $S_{2}(f)(t)=\int_{0}^{t} L_{t} e^{-(t-s) L_{t}} f(s) d s$.
On smooth data: Rewrite $L_{t} S_{2}(f)(t)$ as pseudo-differential operator with symbol

$$
(\tau, s) \mapsto L_{s}\left(2 \pi i \tau+L_{s}\right)^{-1}
$$

Boundedness results (with minimal regularity in s):

- Haak-Ouhabaz: Hilbert spaces
- Portal-Štrkalj: UMD spaces \longleftarrow works weighted ©
- Hytönen-Portal: UMD spaces + multilinear

Operator on f

Recall: $S_{2}(f)(t)=\int_{0}^{t} L_{t} e^{-(t-s) L_{t}} f(s) d s$.
On smooth data: Rewrite $L_{t} S_{2}(f)(t)$ as pseudo-differential operator with symbol

$$
(\tau, s) \mapsto L_{s}\left(2 \pi i \tau+L_{s}\right)^{-1}
$$

Boundedness results (with minimal regularity in s):

- Haak-Ouhabaz: Hilbert spaces
- Portal-Štrkalj: UMD spaces
- Hytönen-Portal: UMD spaces + multilinear

Actual bounds for symbol: good elliptic theory (later!)

Operator S_{1}

Recall: $S_{1}(u)(t)=\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s$.

Operator S_{1}

Recall: $S_{1}(u)(t)=\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s$.
Investigate kernel of $L_{t} S_{1}(u)(t)$. For simplicity: Hilbertian case.

Operator S_{1}

Recall: $S_{1}(u)(t)=\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s$.
Investigate kernel of $L_{t} S_{1}(u)(t)$. For simplicity: Hilbertian case.
A priori: $u \in L^{2}\left(H^{1}\right)$ with $\|u\| \lesssim\|f\|_{2}$
\leadsto Need: $H^{1} \rightarrow L^{2}$ bound for $L_{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right)$.

Operator S_{1}

Recall: $S_{1}(u)(t)=\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s$.
Investigate kernel of $L_{t} S_{1}(u)(t)$. For simplicity: Hilbertian case.
A priori: $u \in L^{2}\left(H^{1}\right)$ with $\|u\| \lesssim\|f\|_{2}$
\leadsto Need: $H^{1} \rightarrow L^{2}$ bound for $L_{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right)$.
Expand: $L_{t}^{*} e^{-(t-s) L_{t}^{*}}=(t-s)^{-\frac{3}{2}}\left(L_{t}^{*}\right)^{-\frac{1}{2}}\left[(t-s) L_{t}^{*}\right]^{\frac{3}{2}} e^{-(t-s) L_{t}^{*}}$.

Operator S_{1}

Recall: $S_{1}(u)(t)=\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s$.
Investigate kernel of $L_{t} S_{1}(u)(t)$. For simplicity: Hilbertian case.
A priori: $u \in L^{2}\left(H^{1}\right)$ with $\|u\| \lesssim\|f\|_{2}$
\leadsto Need: $H^{1} \rightarrow L^{2}$ bound for $L_{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right)$.
Expand: $L_{t}^{*} e^{-(t-s) L_{t}^{*}}=(t-s)^{-\frac{3}{2}}\left(L_{t}^{*}\right)^{-\frac{1}{2}}\left[(t-s) L_{t}^{*}\right]^{\frac{3}{2}} e^{-(t-s) L_{t}^{*}}$.
Duality + Kato $+H^{\infty}$-calculus $\Longrightarrow\left\|L_{t} e^{-(t-s) L_{t}}\right\|_{H^{-1} \rightarrow L^{2}} \lesssim(t-s)^{-\frac{3}{2}}$.

Operator S_{1}

Recall: $S_{1}(u)(t)=\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s$.
Investigate kernel of $L_{t} S_{1}(u)(t)$. For simplicity: Hilbertian case.
A priori: $u \in L^{2}\left(H^{1}\right)$ with $\|u\| \lesssim\|f\|_{2}$
\leadsto Need: $H^{1} \rightarrow L^{2}$ bound for $L_{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right)$.
Expand: $L_{t}^{*} e^{-(t-s) L_{t}^{*}}=(t-s)^{-\frac{3}{2}}\left(L_{t}^{*}\right)^{-\frac{1}{2}}\left[(t-s) L_{t}^{*}\right]^{\frac{3}{2}} e^{-(t-s) L_{t}^{*}}$.
Duality + Kato $+H^{\infty}$-calculus $\Longrightarrow\left\|L_{t} e^{-(t-s) L_{t}}\right\|_{H^{-1} \rightarrow L^{2}} \lesssim(t-s)^{-\frac{3}{2}}$.
If $A \in C^{\frac{1}{2}+\varepsilon}$, then $\left\|L_{t}-L_{s}\right\|_{H^{1} \rightarrow H^{-1}} \lesssim(t-s)^{\frac{1}{2}+\varepsilon}$.

Operator S_{1}

Recall: $S_{1}(u)(t)=\int_{0}^{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right) u(s) d s$.
Investigate kernel of $L_{t} S_{1}(u)(t)$. For simplicity: Hilbertian case.
A priori: $u \in L^{2}\left(H^{1}\right)$ with $\|u\| \lesssim\|f\|_{2}$
\leadsto Need: $H^{1} \rightarrow L^{2}$ bound for $L_{t} e^{-(t-s) L_{t}}\left(L_{t}-L_{s}\right)$.
Expand: $L_{t}^{*} e^{-(t-s) L_{t}^{*}}=(t-s)^{-\frac{3}{2}}\left(L_{t}^{*}\right)^{-\frac{1}{2}}\left[(t-s) L_{t}^{*}\right]^{\frac{3}{2}} e^{-(t-s) L_{t}^{*}}$.
Duality + Kato $+H^{\infty}$-calculus $\Longrightarrow\left\|L_{t} e^{-(t-s) L_{t}}\right\|_{H^{-1} \rightarrow L^{2}} \lesssim(t-s)^{-\frac{3}{2}}$.
If $A \in C^{\frac{1}{2}+\varepsilon}$, then $\left\|L_{t}-L_{s}\right\|_{H^{1} \rightarrow H^{-1}} \lesssim(t-s)^{\frac{1}{2}+\varepsilon}$.

$$
\left\|L_{t} S_{1}(u)(t)\right\|_{2} \lesssim \int_{0}^{t}(t-s)^{-1+\varepsilon}\|u(s)\|_{H^{1}} d s \quad \Longrightarrow \quad \text { Young }
$$

Most important idea in this project!

Parameters: α space regularity, β time regularity (before: $\beta=\frac{1}{2}$).

Most important idea in this project!

Parameters: α space regularity, β time regularity (before: $\beta=\frac{1}{2}$).
Assume a priori: $u \in L^{2}\left(H^{1+\alpha}\right)$ with $\|u\| \lesssim\|f\|_{2}$.

Most important idea in this project!

Parameters: α space regularity, β time regularity (before: $\beta=\frac{1}{2}$).
Assume a priori: $u \in L^{2}\left(H^{1+\alpha}\right)$ with $\|u\| \lesssim\|f\|_{2}$.
If $A \in C^{\beta+\varepsilon}\left(C^{\alpha+\varepsilon}\right)$ (multiplier in space!)

Most important idea in this project!

Parameters: α space regularity, β time regularity (before: $\beta=\frac{1}{2}$).
Assume a priori: $u \in L^{2}\left(H^{1+\alpha}\right)$ with $\|u\| \lesssim\|f\|_{2}$.
If $A \in C^{\beta+\varepsilon}\left(C^{\alpha+\varepsilon}\right)$ (multiplier in space!), then

$$
\left\|L_{t}-L_{s}\right\|_{H^{1+\alpha} \rightarrow H^{-1+\alpha}} \lesssim(t-s)^{\beta+\varepsilon} .
$$

Most important idea in this project!

Parameters: α space regularity, β time regularity (before: $\beta=\frac{1}{2}$).
Assume a priori: $u \in L^{2}\left(H^{1+\alpha}\right)$ with $\|u\| \lesssim\|f\|_{2}$.
If $A \in C^{\beta+\varepsilon}\left(C^{\alpha+\varepsilon}\right)$ (multiplier in space!), then

$$
\left\|L_{t}-L_{s}\right\|_{H^{1+\alpha} \rightarrow H^{-1+\alpha}} \lesssim(t-s)^{\beta+\varepsilon} .
$$

Need $L_{t} e^{-(t-s) L_{t}}: H^{-1+\alpha} \rightarrow L^{2}$.

Most important idea in this project!

Parameters: α space regularity, β time regularity (before: $\beta=\frac{1}{2}$).
Assume a priori: $u \in L^{2}\left(H^{1+\alpha}\right)$ with $\|u\| \leq\|f\|_{2}$.
If $A \in C^{\beta+\varepsilon}\left(C^{\alpha+\varepsilon}\right)$ (multiplier in space!), then

$$
\left\|L_{t}-L_{s}\right\|_{H^{1+\alpha} \rightarrow H^{-1+\alpha}} \lesssim(t-s)^{\beta+\varepsilon} .
$$

Need $L_{t} e^{-(t-s) L_{t}}: H^{-1+\alpha} \rightarrow L^{2}$. Modified expansion:

$$
L_{t}^{*} e^{-(t-s) L_{t}^{*}}=(t-s)^{-\frac{3-\alpha}{2}}\left(L_{t}^{*}\right)^{-\frac{1-\alpha}{2}}\left[(t-s) L_{t}^{*}\right]^{\frac{3-\alpha}{2}} e^{-(t-s) L_{t}^{*}} .
$$

Most important idea in this project!

Parameters: α space regularity, β time regularity (before: $\beta=\frac{1}{2}$).
Assume a priori: $u \in L^{2}\left(H^{1+\alpha}\right)$ with $\|u\| \leq\|f\|_{2}$.
If $A \in C^{\beta+\varepsilon}\left(C^{\alpha+\varepsilon}\right)$ (multiplier in space!), then

$$
\left\|L_{t}-L_{s}\right\|_{H^{1+\alpha} \rightarrow H^{-1+\alpha}} \lesssim(t-s)^{\beta+\varepsilon} .
$$

Need $L_{t} e^{-(t-s) L_{t}}: H^{-1+\alpha} \rightarrow L^{2}$. Modified expansion:

$$
L_{t}^{*} e^{-(t-s) L_{t}^{*}}=(t-s)^{-\frac{3-\alpha}{2}}\left(L_{t}^{*}\right)^{-\frac{1-\alpha}{2}}\left[(t-s) L_{t}^{*}\right]^{\frac{3-\alpha}{2}} e^{-(t-s) L_{t}^{*}} .
$$

For convolution: $-1 \stackrel{!}{=} \beta+\frac{-3+\alpha}{2}$ iff. $2 \beta+\alpha=1$ (parabolic relation).

How to get a priori improvement of solution?

Again u weak solution.

How to get a priori improvement of solution?

Again u weak solution. Apply D_{x}^{α} to equation:

$$
\partial_{t}\left(D_{x}^{\alpha} u\right)-\operatorname{div} A \nabla\left(D_{x}^{\alpha} u\right)=D_{x}^{\alpha} f+\operatorname{div}\left[D_{x}^{\alpha} A-A D_{x}^{\alpha}\right] \nabla u .
$$

How to get a priori improvement of solution?

Again u weak solution. Apply D_{x}^{α} to equation:

$$
\partial_{t}\left(D_{x}^{\alpha} u\right)-\operatorname{div} A \nabla\left(D_{x}^{\alpha} u\right)=D_{x}^{\alpha} f+\operatorname{div}\left[D_{x}^{\alpha} A-A D_{x}^{\alpha}\right] \nabla u
$$

Consequently:

commutator $\left[D_{x}^{\alpha}, A\right]$ bounded $\Longrightarrow D_{x}^{\alpha} u$ weak solution

How to get a priori improvement of solution?

Again u weak solution. Apply D_{x}^{α} to equation:

$$
\partial_{t}\left(D_{x}^{\alpha} u\right)-\operatorname{div} A \nabla\left(D_{x}^{\alpha} u\right)=D_{x}^{\alpha} f+\operatorname{div}\left[D_{x}^{\alpha} A-A D_{x}^{\alpha}\right] \nabla u
$$

Consequently:

$$
\begin{aligned}
\text { commutator }\left[D_{x}^{\alpha}, A\right] \text { bounded } & \Longrightarrow D_{x}^{\alpha} u \text { weak solution } \\
& \Longrightarrow \text { higher regularity }()
\end{aligned}
$$

How to get a priori improvement of solution?

Again u weak solution. Apply D_{x}^{α} to equation:

$$
\partial_{t}\left(D_{x}^{\alpha} u\right)-\operatorname{div} A \nabla\left(D_{x}^{\alpha} u\right)=D_{x}^{\alpha} f+\operatorname{div}\left[D_{x}^{\alpha} A-A D_{x}^{\alpha}\right] \nabla u
$$

Consequently:

$$
\begin{aligned}
\text { commutator }\left[D_{x}^{\alpha}, A\right] \text { bounded } & \Longrightarrow D_{x}^{\alpha} u \text { weak solution } \\
& \Longrightarrow \text { higher regularity }()
\end{aligned}
$$

But is it that easy??

Most important idea in this project!

Serious technical difficulty: to many derivatives on u !

Most important idea in this project!

Serious technical difficulty: to many derivatives on u !
Idea: Smoothing of the coefficients, then take the limit.

Most important idea in this project!

Serious technical difficulty: to many derivatives on u ! Idea: Smoothing of the coefficients, then take the limit.
$L^{2}\left(H^{-1}\right)$-situation

Most important idea in this project!

Serious technical difficulty: to many derivatives on u ! Idea: Smoothing of the coefficients, then take the limit.
$L^{2}\left(H^{-1}\right)$-situation
Lions: implicit constants uniform in ellipticity \checkmark

Most important idea in this project!

Serious technical difficulty: to many derivatives on u ! Idea: Smoothing of the coefficients, then take the limit.

$$
L^{2}\left(H^{-1}\right) \text {-situation }
$$

$L^{q}\left(H^{-1, p}\right)$-situation
Lions: implicit constants uniform in ellipticity \checkmark

Most important idea in this project!

Serious technical difficulty: to many derivatives on u !
Idea: Smoothing of the coefficients, then take the limit.
$L^{2}\left(H^{-1}\right)$-situation
Lions: implicit constants uniform in ellipticity \checkmark
$L^{q}\left(H^{-1, p}\right)$-situation
Perturbation methods \Longrightarrow weak solutions, but not uniform in coefficient functions $)^{*}$

Dong-Kim framework

Theorem (Dong \& Kim)
Coefficient A has vanishing oscillation

Dong-Kim framework

Theorem (Dong \& Kim)
Coefficient A has vanishing oscillation, f and F in weighted $L^{q}\left(L^{p}\right)$ space

Dong-Kim framework

Theorem (Dong \& Kim)

Coefficient A has vanishing oscillation, f and F in weighted $L^{q}\left(L^{p}\right)$ space, then

$$
\partial_{t} u-\operatorname{div} A \nabla u+\lambda u=f+\operatorname{div} F
$$

is well-posed for λ large enough.

Dong-Kim framework

Theorem (Dong \& Kim)

Coefficient A has vanishing oscillation, f and F in weighted $L^{q}\left(L^{p}\right)$ space, then

$$
\partial_{t} u-\operatorname{div} A \nabla u+\lambda u=f+\operatorname{div} F
$$

is well-posed for λ large enough. Constants are under control.

Dong-Kim framework

Theorem (Dong \& Kim)

Coefficient A has vanishing oscillation, f and F in weighted $L^{q}\left(L^{p}\right)$ space, then

$$
\partial_{t} u-\operatorname{div} A \nabla u+\lambda u=f+\operatorname{div} F
$$

is well-posed for λ large enough. Constants are under control.
Moreover: elliptic problem is well-posed

Dong-Kim framework

Theorem (Dong \& Kim)

Coefficient A has vanishing oscillation, f and F in weighted $L^{q}\left(L^{p}\right)$ space, then

$$
\partial_{t} u-\operatorname{div} A \nabla u+\lambda u=f+\operatorname{div} F
$$

is well-posed for λ large enough. Constants are under control.
Moreover: elliptic problem is well-posed \Longrightarrow resolvents for $-\operatorname{div}_{x} A(t, x) \nabla_{x}$ jointly R-bounded over L^{p}

Dong-Kim framework

Theorem (Dong \& Kim)

Coefficient A has vanishing oscillation, f and F in weighted $L^{q}\left(L^{p}\right)$ space, then

$$
\partial_{t} u-\operatorname{div} A \nabla u+\lambda u=f+\operatorname{div} F
$$

is well-posed for λ large enough. Constants are under control.
Moreover: elliptic problem is well-posed \Longrightarrow resolvents for $-\operatorname{div}_{x} A(t, x) \nabla_{x}$ jointly R-bounded over L^{p}
\leadsto pseudo differential operator bounded

Dong-Kim framework

Theorem (Dong \& Kim)

Coefficient A has vanishing oscillation, f and F in weighted $L^{q}\left(L^{p}\right)$ space, then

$$
\partial_{t} u-\operatorname{div} A \nabla u+\lambda u=f+\operatorname{div} F
$$

is well-posed for λ large enough. Constants are under control.
Moreover: elliptic problem is well-posed \Longrightarrow resolvents for $-\operatorname{div}_{x} A(t, x) \nabla_{x}$ jointly R-bounded over L^{p}
\leadsto pseudo differential operator bounded
Note: This uses the structure of the problem!

Main result

Theorem (B. \& F. Gabel)
Let $p, q \in(1, \infty)$

Main result

Theorem (B. \& F. Gabel)
Let $p, q \in(1, \infty), w \in A_{q}$

Main result

Theorem (B. \& F. Gabel)
Let $p, q \in(1, \infty), w \in A_{q}, \alpha, \beta, \varepsilon>0$ with $2 \beta+\alpha=1$

Main result

Theorem (B. \& F. Gabel)
Let $p, \boldsymbol{q} \in(1, \infty), w \in A_{q}, \alpha, \beta, \varepsilon>0$ with $2 \beta+\alpha=1$,

$$
A \in \begin{cases}C_{t}^{\beta+\varepsilon}\left(H_{x}^{\alpha+\varepsilon, \frac{d}{\alpha}}\right), & \text { if } p<\frac{d}{\alpha} \\ C_{t}^{\beta+\varepsilon}\left(C_{x}^{\alpha+\varepsilon}\right), & \text { else. }\end{cases}
$$

Main result

Theorem (B. \& F. Gabel)
Let $p, \boldsymbol{q} \in(1, \infty), w \in A_{q}, \alpha, \beta, \varepsilon>0$ with $2 \beta+\alpha=1$,

$$
A \in \begin{cases}C_{t}^{\beta+\varepsilon}\left(H_{x}^{\alpha+\varepsilon, \frac{d}{\alpha}}\right), & \text { if } p<\frac{d}{\alpha} \\ C_{t}^{\beta+\varepsilon}\left(C_{x}^{\alpha+\varepsilon}\right), & \text { else. }\end{cases}
$$

Given $f \in L^{q}\left(w ; L^{p}\right)$

Main result

Theorem (B. \& F. Gabel)
Let $p, q \in(1, \infty), w \in A_{q}, \alpha, \beta, \varepsilon>0$ with $2 \beta+\alpha=1$,

$$
A \in \begin{cases}C_{t}^{\beta+\varepsilon}\left(H_{x}^{\alpha+\varepsilon, \frac{d}{\alpha}}\right), & \text { if } p<\frac{d}{\alpha} \\ C_{t}^{\beta+\varepsilon}\left(C_{x}^{\alpha+\varepsilon}\right), & \text { else. }\end{cases}
$$

Given $f \in L^{q}\left(w ; L^{p}\right)$, there exists a unique solution to

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0
\end{aligned}
$$

Main result

Theorem (B. \& F. Gabel)
Let $p, q \in(1, \infty), w \in A_{q}, \alpha, \beta, \varepsilon>0$ with $2 \beta+\alpha=1$,

$$
A \in \begin{cases}C_{t}^{\beta+\varepsilon}\left(H_{x}^{\alpha+\varepsilon, \frac{d}{\alpha}}\right), & \text { if } p<\frac{d}{\alpha} \\ C_{t}^{\beta+\varepsilon}\left(C_{x}^{\alpha+\varepsilon}\right), & \text { else }\end{cases}
$$

Given $f \in L^{q}\left(w ; L^{p}\right)$, there exists a unique solution to

$$
\begin{aligned}
\partial_{t} u(t, x)-\operatorname{div}_{x} A(t, x) \nabla_{x} u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{d}, \\
u(0, x) & =0,
\end{aligned}
$$

with $\left\|L_{t} u(t)\right\|_{L^{q}\left(w ; L^{p}\right)} \lesssim\|f\|_{L^{q}\left(w ; L^{p}\right)}$.

Thanks for your attention!
A digital version of this presentation can be found here:

$13 / 13$

