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Elliptic systems

Fix d (dimension) and m (system size). Let O ⊆ Rd . Consider (formally):

L0 = −div (A∇ + b) + c · ∇ + d

More precisely: fix C∞0 (O) ⊆ V ⊆ H1(O) closed, consider form

a : V × V → C, a (u, v) =
∫

O

[
d c
b A

] [
u
∇u

]
·
[

v
∇v

]
dx

with complex, bounded & measurable coefficients (m ×m-valued).

Gårding elliptic:

Re a(u, u) ≥ _‖u‖2H1 , u ∈ V .

Examples for V : H1
0 (O) (Dirichlet BC), H1(O) (natural BC),

H1
D (O) (mixed BC).
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Elliptic systems

Recall: sesquilinear form

a : V × V → C, a (u, v) =
∫

O

[
d c
b A

] [
u
∇u

]
·
[

v
∇v

]
dx

with complex, bounded, measurable & elliptic coefficients.

Associate operator L0 in L2(O) with a via

u ∈ D (L0) & L0u = w ∈ L2(O) ⇔ (w | v) = a (u, v) for all v ∈ V .

Operator L0 is maximal accretive (= very nice).

Let a : O → Cm×m bounded & elliptic. Perturbed elliptic system: L = aL0.

L is sectorial of angle l ∈ [0, c): still nice, but maybe no generator of
semigroup.
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Why difficult to study?

Geometry & boundary conditions: counterexamples/restrictions by
Jerison–Kenig, Shamir, ...

Rough coefficients: dimension d = 1, A = 1 + 1[0,1] .

Put v (x) =
∫ x

0
A−1(y) dy and u = [v, where [ ∈ C∞0 (R), [ = 1 on [0, 2].

Then:

u ∈ D (L) (product rule, coefficients cancel out)

u′ = A−1 = 1 − 1
21[0,1] on [0, 2] =⇒ u′ ∉ H1(R), no optimal elliptic

regularity!
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Why are rough coefficients natural?

Geometry & boundary conditions: real-world applications→ Joachim
Rehberg is expert to ask!

1 Quasilinear problems

mtu − div (a (u)∇u) = F (u), u(0) = u0.

Non-autonomous problem, for fixed t : elliptic operator is
L = −div (a (u(t , ·))∇).
In general, u(t , ·), and hence A = a (u(t , ·)) has no smoothness in x...

2 Elliptic BVP over Lipschitz graph
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What is Kato’s square root problem?

L sectorial operator =⇒ exists operator L
1
2 such that L = L

1
2 L

1
2 (by

functional calculus). Call L
1
2 the square root of L .

In general: D (L) not second-order Sobolev space. Question: D (L 1
2 )

first-order Sobolev space?

Conjecture
One has

D (L 1
2 ) = V & ‖L 1

2 u‖L2 (O) ≈ ‖u‖V .
Implicit constants depend on ellipticity, dimensions and V only.
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Geometrical framework

Let O ⊆ Rd open, D ⊆ mO , N = mO \ D.

Assumptions:
1 O is locally uniform near N,
2 D is Ahlfors–David regular.

In particular: no thickness, no boundedness, no connectedness required.
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Solution to Kato’s square root problem

Theorem (B., Egert, Haller-Dintelmann, Adv. Math.)

Let O ⊆ Rd open, D ⊆ mO, N = mO \ D. Assume D is Ahlfors–David
regular and O is locally uniform near N. Then one has

D (L 1
2 ) = H1

D (O) & ‖L 1
2 u‖L2 (O) ≈ ‖u‖H1 (O) .

Implicit constants depend on ellipticity, dimensions and geometry only.
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What about Lp-theory?

Reformulation of square root property:

L
1
2 : W1,2

D (O) → L2(O) isomorphism.

Natural question: for which p ∈ (1,∞):

L
1
2 : W1,p

D (O) → Lp (O) isomorphism.

Counterexamples (Frehse): not true for all p. So, for which is it?
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critical numbers

Define

I(L) =
{
p ∈ (1,∞) : {(1 + t2L)−1}t>0 is Lp-bounded

}
,

J(L) =
{
p ∈ (1,∞) : L0 is p-isomorphism

}
.

Put
p−(L) = inf I(L), p+(L) = sup I(L),
q̃−(L) = inf J(L), q̃+(L) = sup J(L).

Some examples:

m = 1, real coefficients =⇒ p−(L) = 1 and p+(L) = ∞.

In general: p−(L) ≤ 2∗ − Y and p+(L) ≥ 2∗ + Y
O = Rd , Hölder coefficients =⇒ q̃+(L) = ∞.

In general: q̃+(L) ≤ 2 + Y.
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Lp-theory for square roots

Theorem

Assume setting of L2-result.
Let p ∈ (p−(L), q̃+(L)). Then L

1
2 : W1,p

D (O) → Lp (O) isomorphism.

The interval (p−(L), q̃+(L)) is (essentially) optimal.
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Consequences of square root estimates

1 Trace estimate for non-autonomous problems

For f ∈ L2( [0, T ]; L2(O)) consider

mtu − div (A (t , ·)∇u) = f , u(0) = u0.

Maximal regularity (autonomous): solution u ∈ C ( [0, T ];D (L 1
2 )).

Non-autonomous case: question doesn’t make sense/wrong in
general. However:

square root property =⇒ solution u ∈ C ( [0, T ];V).

Important for applications to quasilinear problems with Neumann BC!
(current project with T. Leeuwis and M. Veraar)
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Consequences of square root estimates

2 Maximal regularity / Bounded H∞-calculus over W−1,p

Application to evolution equations with surface densities: need forcing
term in distribution space W−1,p , p > d.

Maximal regularity?

Often known for Lq (O). Translate to W−1,p? Yes! Using the square
root of L∗.

Condition p > d fulfilled for:

A real, m = 1
any dimension d

general complex A
d ≤ 4
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Consequences of square root estimates

3 Lipschitz dependence of L
1
2 on coefficients

Let LA = −div (A∇), LB = −div (B∇) (say with real coefficients). Does
one have

‖L
1
2

A u − L
1
2

B u‖L2 (O) . ‖A − B ‖∞‖u‖H1
D (O)

?

Surprisingly difficult to show!

With square root property: A ↦→ LA analytic. In particular: Lipschitz
dependence on coefficients.

But: Need complex structure (for analyticity) even for real statement!
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Open questions / Ongoing projects

1 Bounded H∞-calculus over W−1,p without square root.

Proof by transference:
critical numbers (of L∗) =⇒ interval for H∞-calculus over W−1,p .

Can this be improved?

Yes, by direct extrapolation. Expect to get (at least)
2 ≤ p < (p−(L∗) ′)∗.

Recall condition p > d: general case with square root only when
d ≤ 4. Now get d ≤ 6!

Current project with M. Egert and B. Kosmela (Darmstadt).
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Open questions / Ongoing projects

2 Second-order proof for L2-result

L is a second-order differential operator.

However: proof for Kato uses auxiliary first-order operators: first-order
approach, Axelsson–Keith-McIntosh (Invent. Math.).

On Rd : pure second-order proof available. Unfortunately, they use the
Fourier transform...

Student project with C. Hutcheson, T. Schmatzler, T. Tasci, and M.
Wittig: recover L2-main result with pure second-order proof.
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Thank you for your attention!

A digital version of this presentation can be found here:
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http://sebastian-bechtel.info/berlin2024.pdf

